University of Illinois at Urbana-Champaign

ECE 534: Random Processes

Fall 2008 Exam 2

Monday, November 17, 2008

Name:	
• You have 75 minutes for this exam. The exam is closed book and closed note, except you n consult both sides of two $8.5'' \times 11''$ sheet of notes.	ıay
• Calculators, laptop computers, Palm Pilots, two-way e-mail pagers, etc. may not be used.	
• Write your answers in the spaces provided.	
• Please show all of your work. Answers without appropriate justification will receivery little credit. If you need extra space, use the back of the previous page.	ive
Score:	
1(12 pts.)	
2 (12 pts.)	
3 (16 pts.)	

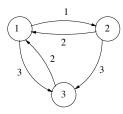
Total: _____(40 pts.)

Problem 1 (12 points) Suppose $a=(a_0,a_1,a_2,a_3)$ is a probability vector to be estimated by observing $Y=(Y_1,T_2,\cdots,Y_T)$. Assume Y_1,\ldots,Y_T are independent, and $P\{Y_t=i\}=a_i$ for $1\leq t\leq T$ and $i\in\{0,1,2,3\}$.

(a)(6 points) Determine the maximum likelihood estimate, $\hat{a}_{ML}(y)$, given a particular observation $y = (y_1, \dots, y_T)$. Justify your answer.

(b)(6 points) Suppose in addition to the above that a has the form $a_i = \binom{3}{i}q^i(1-q)^{3-i}$, or in other words, that a is a binomial pmf with parameters (3,q). Determine the maximum likelihood estimate, $\widehat{q}_{ML}(y)$, given a particular observation $y = (y_1, \ldots, y_T)$. Justify your answer.

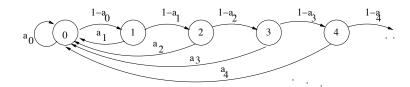
Problem 2 (12 points) Consider a continuous-time Markov process with the rate transition diagram shown:



(a) (2+4 points) Write down the rate transition matrix Q and find the equilibrium distribution π .

(b) (6 points) Find $P[X_t \neq 3 \text{ for } 0 \leq t \leq 5 | X_0 = 1]$. Be as explicit as possible. (Hint: for the particular rates given, this can be solved with very little calculation.)

Problem 3 (16 points) Consider a discrete-time, time-homogeneous Markov process with state space \mathbb{Z}_+ and the one-step transition probability diagram shown, where $0 < a_k < 1$ for all $k \geq 0$. Note that this is *not* a birth-death process.



(a)(4 points) Sketch the one-step transition probability matrix. (The matrix has infinitely many entries, so use dot dot dot " \cdots " notation.)

(b) (4 points) Under what condition on the a's is the process recurrent?

(c) (4 points) Under what condition on the a 's is the process positive recurrent?
(d) (4 points) Find the equilibrium distribution π in terms of the a 's, and in particular, indicate when an equilibrium distribution exists. Be as explicit as possible.