Basic Calculus of Random Processes

Assigned Reading: Chapter 5 and Sections 8.3-8.5 of the notes.

Problems to be handed in:

1. Properties of a binary valued process

Let $Y = (Y_t : t \ge 0)$ be given by $Y_t = (-1)^{N_t}$, where N is a Poisson process with rate $\lambda > 0$.

- (a) Is Y a Markov process? If so, find the transition probability function $p_{i,j}(s,t)$ and the transition rate matrix Q.
- (b) Is Y mean square continuous?
- (c) Is Y mean square differentiable?
- (d) Does $\lim_{T\to\infty} \frac{1}{T} \int_0^T y_t dt$ exist in the m.s. sense? If so, identify the limit.

2. Differentiation of the square of a Gaussian random process

- (a) Show that if random variables $(A_n: n \geq 0)$ are mean zero and jointly Gaussian and if $\lim_{n\to\infty} A_n = A$ m.s., then $\lim_{n\to\infty} A_n^2 = A^2$ m.s. (Hint: If A,B,C, and D are mean zero and jointly Gaussian, then E[ABCD] = E[AB]E[CD] + E[AC]E[BD] + E[AD]E[BC].)
- (b) Show that if random variables $(A_n, B_n : n \ge 0)$ are jointly Gaussian and $\lim_{n\to\infty} A_n = A$ m.s. and $\lim_{n\to\infty} B_n = B$ m.s. then $\lim_{n\to\infty} A_n B_n = AB$ m.s. (Hint: Use part (a) and the identity $ab = \frac{(a+b)^2 a^2 b^2}{2}$.)
- (c) Let X be a mean zero, m.s. differentiable Gaussian random process, and let $Y_t = X_t^2$ for all t. Is Y m.s. differentiable? If so, justify your answer and express the derivative in terms of X_t and X_t' .

3. A integral of white noise times an exponential

Let $X = \int_0^t Z_u e^{-u} du$, where Z is white Gaussian noise with autocorrelation function $\delta(\tau)\sigma^2$, for some $\sigma^2 > 0$.

- (a) Find the autocorrelation function, $R_X(s,t)$ for $s,t \geq 0$.
- (b) Is X mean square differentiable? Justify your answer.
- (c) Does X_t converge in the mean square sense as $t \to \infty$? Justify your answer.

4. A singular integral with a Brownian motion

Consider the integral $\int_0^1 \frac{w_t}{t} dt$, where $w = (w_t : t \ge 0)$ is a standard Brownian motion. Since $\operatorname{Var}(\frac{w_t}{t}) = \frac{1}{t}$ diverges as $t \to 0$, we define the integral as $\lim_{\epsilon \to 0} \int_{\epsilon}^1 \frac{w_t}{t} dt$ m.s. if the limit exists.

- (a) Does the limit exist? If so, what is the probability distribution of the limit?
- (b) Similarly, we define $\int_1^\infty \frac{w_t}{t} dt$ to be $\lim_{T\to\infty} \int_1^T \frac{w_t}{t} dt$ m.s. if the limit exists. Does the limit exist? If so, what is the probability distribution of the limit?

5. A random process which changes at a random time

Let $Y = (Y_t : t \in \mathbb{R})$ and $Z = (Z_t : t \in \mathbb{R})$ be stationary Gaussian Markov processes with mean zero and autocorrelation functions $R_Y(\tau) = R_Z(\tau) = e^{-|\tau|}$. Let U be a real-valued random variable and suppose Y, Z, and U, are mutually independent. Finally, let $X = (X_t : t \in \mathbb{R})$ be defined by

$$X_t = \left\{ \begin{array}{ll} Y_t & t < U \\ Z_t & t \ge U \end{array} \right.$$

- (a) Sketch a typical sample path of X.
- (b) Find the first order distributions of X.
- (c) Express the mean and autocorrelation function of X in terms of the CDF, F_U , of U.
- (d) Under what condition on F_U is X m.s. continuous?
- (e) Under what condition on F_U is X a Gaussian random process?

6. Karhunen-Loève expansion of a simple random process

Let X be a WSS random process with mean zero and autocorrelation function

 $R_X(\tau) = 100(\cos(10\pi\tau))^2 = 50 + 50\cos(20\pi\tau).$

- (a) Is X mean square differentiable? (Justify your answer.)
- (b) Is X mean ergodic in the m.s. sense? (Justify your answer.)
- (c) Describe a set of eigenfunctions and corresponding eigenvalues for the Karhunen-Loève expansion of $(X_t : 0 \le t \le 1)$.

7. Mean ergodicity of a periodic WSS random process

Let X be a mean zero periodic WSS random process with period T > 0. Recall that X has a power spectral representation

$$X_t = \sum_{n \in \mathbb{Z}} \widehat{X}_n e^{2\pi j n t/T}.$$

where the coefficients \widehat{X}_n are orthogonal random variables. The power spectral mass function of X is the discrete mass function p_X supported on frequencies of the form $\frac{2\pi n}{T}$, such that $E[|\widehat{X}_n|^2] = p_X(\frac{2\pi n}{T})$. Under what conditions on p_X is the process X mean ergodic in the m.s. sense? Justify your answer.