Random Vectors and Minimum Mean Squared Error Estimation

Assigned Reading: Chapter 3 and the section on matrices in the Appendix, in the course notes.

Problems to be handed in:

1. Calculation of some minimum mean square error estimators

Let Y = X + N, where X has the exponential distribution with parameter λ , and N is Gaussian with mean 0 and variance σ^2 . The variables X and N are independent, and the parameters λ and σ^2 are strictly positive. (Recall that $E[X] = \frac{1}{\lambda}$ and $Var(X) = \frac{1}{\lambda^2}$.)

- (a) Find $\widehat{E}[X|Y]$ and also find the mean square error for estimating X by $\widehat{E}[X|Y]$.
- (b) Does $E[X|Y] = \widehat{E}[X|Y]$? Justify your answer. (Hint: Answer is yes if and only if there is no estimator for X of the form g(Y) with a smaller MSE than $\widehat{E}[X|Y]$.)

2. Conditional probabilities with joint Gaussians I

Let $\begin{pmatrix} X \\ Y \end{pmatrix}$ be a mean zero Gaussian vector with correlation matrix $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, where $|\rho| < 1$.

- (a) Express $P[X \leq 1|Y]$ in terms of ρ , Y, and the standard normal CDF, Φ .
- (b) Find $E[(X Y)^2 | Y = y]$ for real values of y.

3. Conditional probabilities with joint Gaussians II

Let X, Y be jointly Gaussian random variables with mean zero and covariance matrix

$$Cov\left(\begin{array}{c}X\\Y\end{array}\right) = \left(\begin{array}{cc}4&6\\6&18\end{array}\right).$$

You may express your answers in terms of the Φ function defined by $\Phi(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} e^{-s^2/2} ds$.

- (a) Find $P[|X 1| \ge 2]$.
- (b) What is the conditional density of X given that Y = 3? You can either write out the density in full, or describe it as a well known density with specified parameter values.
- (c) Find $P[|X E[X|Y]| \ge 1]$.

4. Some identities for estimators

Let X and Y be random variables with $E[X^2] < \infty$. For each of the following statements, determine if the statement is true. If yes, give a justification using the orthogonality principle. If no, give a counter example.

- (a) $E[X\cos(Y)|Y] = E[X|Y]\cos(Y)$
- (b) $E[X|Y] = E[X|Y^3]$
- (c) $E[X^3|Y] = E[X|Y]^3$
- (d) $E[X|Y] = E[X|Y^2]$
- (e) $\hat{E}[X|Y] = \hat{E}[X|Y^3]$

5. The square root of a positive-semidefinite matrix

- (a) True or false? It B is a square matrix over the reals, then BB^T is positive semidefinite.
- (b) True or false? If K is a symmetric positive semidefinite matrix over the reals, then there exists a symmetric positive semidefinite matrix S over the reals such that $K = S^2$. (Hint: What if K is also diagonal?)

6. An innovations problem

Let U_1, U_2, \ldots be a sequence of independent random variables, each uniformly distributed on the interval [0, 1]. Let $Y_0 = 1$, and $Y_n = U_1 U_2 \cdots U_n$ for $n \ge 1$.

- (a) Find the variance of Y_n for each $n \ge 1$.
- (b) Find $E[Y_n|Y_0,...,Y_{n-1}]$ for $n \ge 1$.
- (c) Find $\widehat{E}[Y_n|Y_0,\ldots,Y_{n-1}]$ for $n \geq 1$.
- (d) Find the linear innovations sequence $\widetilde{Y} = (\widetilde{Y}_0, \widetilde{Y}_1, \ldots)$.
- (e) Fix a positive integer M and let $X_M = U_1 + \ldots + U_M$. Using the answer to part (d), find $E[X_M|Y_0,\ldots,Y_M]$, the best linear estimator of X_M given (Y_0,\ldots,Y_M) .

7. Linear Innovations and Orthogonal Polynomials

(a) Let X be a N(0,1) random variable. Show that for integers $n \geq 0$,

$$E[X^n] = \begin{cases} \frac{n!}{(n/2)!2^{n/2}} & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$$

Hint: One approach is to apply the power series expansion for e^x on each side of the identity $E[e^{uX}] = e^{u^2/2}$, and identify the coefficients of u^n .

(b) Let X be a N(0,1) random variable, and let $Y_n = X^n$ for integers $n \ge 0$. Note that $Y_0 \equiv 1$. Express the first five terms of the linear innovations sequence \tilde{Y}_n in terms of X.

8. Steady state gains for one-dimensional Kalman filter

This is a continuation of Problem 3.7 in the notes, regarding the Kalman filter for a one-dimensional state space.

- (a) Show that $\lim_{k\to\infty} \sigma_k^2$ exists. (b) Express the limit, σ_∞^2 , in terms of f.
- (c) Explain why $\sigma_{\infty}^2 = 1$ if f = 0.