University of Illinois at Urbana-Champaign

ECE 534: Random Processes

Fall 2005 Final Exam

Saturday, December 17, 2005

• You have three hours for this exam. The exam is closed book and closed note, except you may consult both sides of three $8.5'' \times 11''$ sheets of notes in ten point font size or larger, or equivalent

• Calculat	ors, laptop computers, Palm Pilots, two-way e-mail pagers, etc. may not be used.
• Write yo	our answers in the spaces provided.
• Please show all of your work. Answers without appropriate justification will receive very little credit. If you need extra space, use the back of the previous page.	
Score:	
1	$_{-}\left(12\;\mathrm{pts.} ight)$
2	$_{-}$ (9 pts.)
3	$_{-}$ (12 pts.)
4	$_{-}$ (6 pts.)
5	$_{-}$ (9 pts.)
6	$_{-}$ (12 pts.)

handwriting size.

Total: _____(60 pts.)

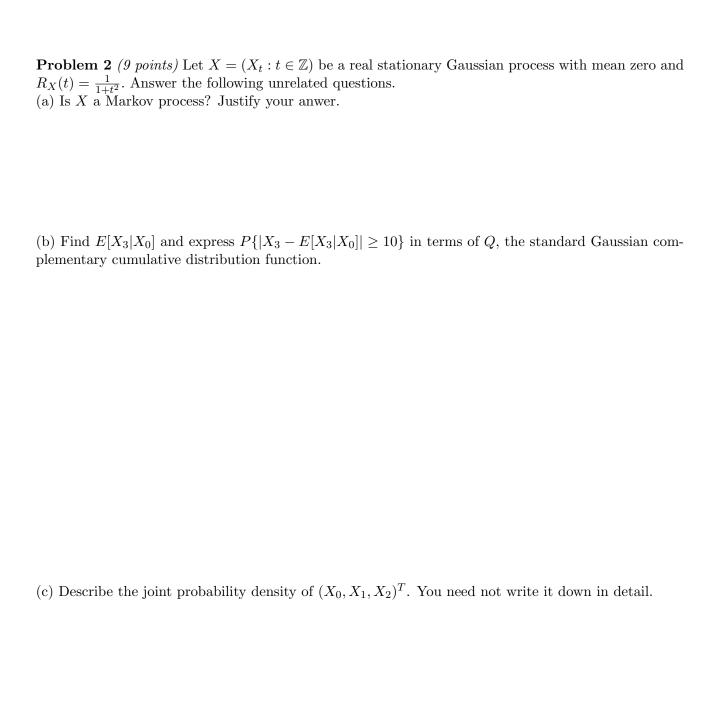
Problem 1(12 points) Let $U=(U_k:k\in\mathbb{Z})$ such that the U_k are independent, and each is uniformly distributed on the interval [0,1]. Let $X=(X_t:t\in\mathbb{R})$ denote the continuous time random process obtained by linearly interpolating between the U's. Specifically, $X_n=U_n$ for any $n\in\mathbb{Z}$, and X_t is affine on each interval of the form [n,n+1] for $n\in\mathbb{Z}$.

(a) Sketch a sample path of U and a corresponding sample path of X.

(b) Let $t \in \mathbb{R}$. Find and sketch the first order marginal density, $f_{X,1}(x,t)$. (Hint: Let $n = \lfloor t \rfloor$ and a = t - n, so that t = n + a. Then $X_t = (1 - a)U_n + aU_{n+1}$. It's helpful to consider the cases and 0.5 < a < 1 separately. For brevity, you need only consider the case $0 \le a \le 0.5$.)

(c) Is the random process X WSS? Justify your answer.

(d) Find $P\{\max_{0 \le t \le 10} X_t \le 0.5\}$.



Problem 3 (12 points) Let $U=(U_k:k\in\mathbb{Z})$ be a random process such that the variables U_k are independent, identically distributed, with $E[U_k]=\mu$ and $Var(U_k)=\sigma^2$, where $\mu\neq 0$ and $\sigma^2>0$. Please keep in mind that $\mu\neq 0$.

Let $X = (X_n : n \in \mathbb{Z})$ be defined by $X_n = \sum_{k=0}^{\infty} U_{n-k} a^k$, for a constant a with 0 < a < 1.

(a) Is X stationary? Find the mean function μ_X and autocovariance function C_X for X.

(b) Is X mean ergodic in the m.s. sense?

Let U be as before, and let $Y=(Y_n:n\in\mathbb{Z})$ be defined by $Y_n=\sum_{k=0}^\infty U_{n-k}A^k$, where A is a random variable distributed on the interval (0,0.5) (the exact distribution is not specified), and A is independent of the random process U.

(c) Is Y stationary? Find the mean function μ_Y and autocovariance function C_Y for Y.

(d) Is Y mean ergodic in the m.s. sense?

Problem 4 (6 points) Consider a time-homogeneous, discrete-time Markov process $X = (X_k : k \ge 0)$

$$P = \left(\begin{array}{ccc} 0.0 & 0.8 & 0.2\\ 0.1 & 0.6 & 0.3\\ 0.2 & 0.8 & 0.0 \end{array}\right)$$

with state space $S = \{1, 2, 3\}$, initial state $X_0 = 3$, and one-step transition probability matrix $P = \begin{pmatrix} 0.0 & 0.8 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ 0.2 & 0.8 & 0.0 \end{pmatrix}.$ (a) Sketch the transition probability diagram and find the equilibrium probability distribution $\pi = 1$ $(\pi_1, \pi_2, \pi_3).$

(b) Identify a function f on S so that f(s) = a for two choices of s and f(s) = b for the third choice of s, such that the process $Y = (Y_k : k \ge 0)$ defined by $Y_k = f(X_k)$ is a Markov process, and give the one-step transition probability matrix of Y. Briefly explain your answer.

Problem 5 (9 points) Let X be a mean zero, WSS random process with power spectral density $S_X(\omega) = \frac{1}{\omega^4 + 5\omega^2 + 4}$.

(a) Find the positive type, minimum phase rational function S_X^+ such that $S_X(\omega) = |S_X^+(\omega)|^2$.

(b) Let T be a fixed known constant with $T \geq 0$. Using the formula $H = \frac{1}{S_X^+} \left[S_X^+ e^{j\omega T} \right]_+$, find $\widehat{X}_{t+T|t}$, the MMSE linear estimator of X_{t+T} given $(X_s:s\leq t)$. Be as explicit as possible. (Hint: Convert to the time domain at the end. Check that your answer is correct in case T=0 and in case $T\to\infty$).

(c) Find the MSE for the optimal estimator of part (b).

 $\begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} Z + \begin{pmatrix} 0 \\ 1 \end{pmatrix} W.$ (a) Show that $S_X(\omega) = \frac{1}{\omega^4 + 5\omega^2 + 4}$.

(b) Find $R_X(\tau)$ for $\tau \in \mathbb{R}$. (Hint: Use a partial fraction expansion of S_X .)

(c) The process X is mean square differentiable. Find $R_{X'}(\tau)$ and $R_{XX'}(\tau)$ for $\tau \in \mathbb{R}$. (Hint: Check that $R_{XX'}(0) = 0$.)

(d) Explain why Z is a Markov process.

(e) Let T > 0, let $t \in \mathbb{R}$, and let $\widehat{X}_{t+T|t}$ be the MMSE estimator of X_{t+T} given $(X_u : u \le t)$, which is the same as the MMSE estimator of X_{t+T} given $(Z_u : u \le t)$, because $(X_u : u \le t)$ and $(Z_u : u \le t)$ are linearly equivalent. Explain why $\widehat{X}_{t+T|t}$ is a linear combination of X_t and X_t' .

(f) Using parts (c) and (e), find $\widehat{X}_{t+T|t}$.