This homework is a review of basic notions in real analysis. As this course is more proof-heavy than previous control theory courses, we will see these methods and results used throughout the semester.

Problem 1. Recall that the topological definition of continuity: a function $f: X \rightarrow Y$ is continuous if, for every open set $U \subseteq Y$, the set $f^{-1}(U)=\{x: f(x) \in U\} \subseteq X$ is open. Additionally, recall the $\epsilon-\delta$ definition of continuity: a function f is continuous if for every $x \in X$ and $\epsilon>0$, there exists a $\delta>0$ such that for any $x^{\prime} \in X,\left|x-x^{\prime}\right|<\delta$ implies $\left|f(x)-f\left(x^{\prime}\right)\right|<\epsilon$.

Prove the two definitions of continuity are equivalent when the open sets are defined by the norm. (That is, a set U is open if, for every $x \in U$, there exists an $\epsilon>0$ such that $B_{\epsilon}(x)=\left\{x^{\prime}:\left|x-x^{\prime}\right|<\epsilon\right\} \subseteq U$.)

Hint: Draw this out and convince yourself why it's true, and then formalize that intuition afterward. Formally, all the definitions needed are provided here.

Problem 2. For a subset $A \subseteq \mathbb{R}$, the supremum of A is the smallest real number c such that $c \geq x$ for all $x \in A$. As such, it's often also called the least upper bound. If no such real number can serve as an upper bound, we say the supremum is $+\infty$. This is written as $\sup A$. (Additionally, when the set A is empty, we say $\sup A$ is $-\infty$, by convention. The reasoning is as follows: for any $c \in \mathbb{R}$, we have $c \geq x$ for all $x \in A$ when A is the empty set.)

Similarly, the infimum of A is the largest real number c such that $c \leq x$ for all $x \in A$. It is the greatest lower bound. You may take it for granted that every subset of \mathbb{R} has a supremum and an infimum, although they could be possibly infinite.

If there exists an $x \in A$ such that $x=\sup A$, we say the supremum is attained. In such situations, we say $x=\max A$ as well. When the supremum is not attained, the maximum is not defined. For example, the supremum of $A=(0,1)$ is 1 , but $1 \notin A$. So, $\sup A=1$ but the maximum is not defined.

We may also define the supremum of a function $f: X \rightarrow \mathbb{R}$ as $\sup \{f(x): x \in X\}$. (In other words, we take the supremum over the set $A=\{f(x): x \in X\}$.) We often write this as $\sup f \operatorname{or}_{\sup _{x} f(x) \text {. If }}$ there exists an $x \in A$ such that $f(x)=\sup f$, we say the supremum is attained and we will also write $\sup _{x} f(x)=\max _{x} f(x)$. The definition of the maximum is similar, and is undefined in the case where the supremum is not obtained.

Recall that a set is compact if every open cover has a finite subcover, and a function is continuous if the inverse image of every open set is an open set.

After all that preamble, here's the homework problem. Let $f: X \rightarrow \mathbb{R}$ be a continuous function, and suppose the domain X is compact and non-empty. Show that the supremum and infimum are attained. (Note that it suffices just to show for the supremum, as the other would follow immediately as a consequence.)

This result is known as Weierstrass's extreme value theorem, and we'll use it regularly throughout the course.

Hint: There are many ways to show this; feel free to do so however you wish. If you're stuck, here's a hint for one method. Suppose $c=\sup f$ is finite, and consider the sets $f^{-1}((-\infty, c-1 / n))$. Compactness helps greatly here. Once you finish this part of the proof, you can apply similar reasoning to the sets $f^{-1}((-\infty, n))$ to arrive at a contradiction and show that $\sup f$ must be finite.

Problem 3. Consider any norm $\|\cdot\|$ on \mathbb{R}^{n}. Prove that the unit ball $\{x:\|x\| \leq 1\}$ is convex.
Hint: As mentioned in lecture, the convexity primarily follows from the triangle inequality. However, other properties of norms are needed as well.

