
ECE 528, Spring 2021 Homework 1

This homework is a review of basic notions in real analysis. As this course is more proof-heavy than
previous control theory courses, we will see these methods and results used throughout the semester.

Problem 1. Recall that the topological definition of continuity: a function f : X → Y is continuous if,
for every open set U ⊆ Y , the set f−1(U) = {x : f(x) ∈ U} ⊆ X is open. Additionally, recall the ε-δ
definition of continuity: a function f is continuous if for every x ∈ X and ε > 0, there exists a δ > 0 such
that for any x′ ∈ X, |x− x′| < δ implies |f(x)− f(x′)| < ε.

Prove the two definitions of continuity are equivalent when the open sets are defined by the norm. (That
is, a set U is open if, for every x ∈ U , there exists an ε > 0 such that Bε(x) = {x′ : |x− x′| < ε} ⊆ U .)

Hint: Draw this out and convince yourself why it’s true, and then formalize that intuition afterward.
Formally, all the definitions needed are provided here.

Problem 2. For a subset A ⊆ R, the supremum of A is the smallest real number c such that c ≥ x for
all x ∈ A. As such, it’s often also called the least upper bound. If no such real number can serve as
an upper bound, we say the supremum is +∞. This is written as supA. (Additionally, when the set A is
empty, we say supA is −∞, by convention. The reasoning is as follows: for any c ∈ R, we have c ≥ x for
all x ∈ A when A is the empty set.)

Similarly, the infimum of A is the largest real number c such that c ≤ x for all x ∈ A. It is the
greatest lower bound. You may take it for granted that every subset of R has a supremum and an
infimum, although they could be possibly infinite.

If there exists an x ∈ A such that x = supA, we say the supremum is attained. In such situations, we
say x = maxA as well. When the supremum is not attained, the maximum is not defined. For example,
the supremum of A = (0, 1) is 1, but 1 /∈ A. So, supA = 1 but the maximum is not defined.

We may also define the supremum of a function f : X → R as sup{f(x) : x ∈ X}. (In other words,
we take the supremum over the set A = {f(x) : x ∈ X}.) We often write this as sup f or supx f(x). If
there exists an x ∈ A such that f(x) = sup f , we say the supremum is attained and we will also write
supx f(x) = maxx f(x). The definition of the maximum is similar, and is undefined in the case where the
supremum is not obtained.

Recall that a set is compact if every open cover has a finite subcover, and a function is continuous if
the inverse image of every open set is an open set.

After all that preamble, here’s the homework problem. Let f : X → R be a continuous function,
and suppose the domain X is compact and non-empty. Show that the supremum and infimum are at-
tained. (Note that it suffices just to show for the supremum, as the other would follow immediately as a
consequence.)

This result is known as Weierstrass’s extreme value theorem, and we’ll use it regularly throughout the
course.

Hint: There are many ways to show this; feel free to do so however you wish. If you’re stuck, here’s a
hint for one method. Suppose c = sup f is finite, and consider the sets f−1((−∞, c− 1/n)). Compactness
helps greatly here. Once you finish this part of the proof, you can apply similar reasoning to the sets
f−1((−∞, n)) to arrive at a contradiction and show that sup f must be finite.

Problem 3. Consider any norm ‖ · ‖ on Rn. Prove that the unit ball {x : ‖x‖ ≤ 1} is convex.
Hint: As mentioned in lecture, the convexity primarily follows from the triangle inequality. However,

other properties of norms are needed as well.


