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Reading: Course notes, Chapter 11

1. [Lagrange multipliers — sensitivity interpretation)]
Suppose ¢; for 1 < ¢ < K are continuously differentiable strictly convex functions on the reals
such that ¢(u;) — oo as |u;| — co. For u € RE let V(u) := Zfil ¢i(u;) and h(u) = Zfil ;.
Consider the problem

(a)

min V' (u) subject to h(u) = ¢

Find the first order necessary condition for optimality using the Lagrangian V(u) =
V(u) + p(c — h(u)) with Lagrange multiplier p.

Solution: The equation for a stationary point of V is VV = 0, which together with the
constraint h(u) = ¢ leads to the following optimality conditions:

G =plor 1<i<K Yu=c
%

Let v(c) denote the optimal value as a function of ¢, i.e. v(c) = min,.,(u)—c V' (u), and let
p(c) denote the value of the Lagrange multiplier found in part (a). Show that v/(c) = p(c).
In other words, the Lagrange multiplier is locally the ratio of change in optimal value to
the change in the level ¢ of the constraint. (Hint: To get started, fix a value of ¢ and let
u denote the corresponding optimal u vector and let p = p(c). Changing ¢ to ¢ + dc for
dc > 0 results in a change of the optimal u; to u; + du; such that 0 < du; < dc for each
i. Apply Taylor’s theorem.)

Solution: Start as suggested. By the facts fact ¢}(u;) = p; and |du;| < de, Taylor’s
theorem implies ¢;(u; + 0u;) = ¢i(u;) + p - du; + o(dc), where o(dc)/dc — 0 as e — 0.
Thus,

v(c+ dc) = Z di(ui + 0u;i) = > (¢i(ui) + pdu; + o(6c))
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=wv(c)+p-dc+ o(dc)

Equivalently, v'(c) = p.

2. [Local but not global optimality of minimum principle solution]
Consider the system/performance index

t1 u2
t=u z(0)=0 V(u) = /0 ?dt + cos(z(t1)).

where ¢1 is a fixed terminal time and the terminal state x(¢;) is freely varying.



(a) Find the optimality conditions implied by the minimum principle for this problem and
simplify them as much as possible.

Solution: We apply Theorem 11.1 with ¢(z,u,t) = %, flz,u,t) = u, m(z) = cos(z).
We find u°(t) = arg minu{%2 + p(t)u} = —p(t). The costate variable satisfies p(t)
)

—V.{u? + p(t)u} = 0 so that p is constant in time (so we write “p” instead of “p(t)”).
Using the boundary condition at ¢; for p we have p = m/(z(¢t1)) = —sin(z(¢1)). The
control u is also constant in time and is given by u = —p. Therefore x(t) = ut. Thus,
we can restrict the search for solutions to a search over the parameter p or over u or
over z(t1). To be definite, we search over possible values x for x(¢;). That is, we set
xz(t1) =z, u = x/t;, p = —x/t;. Finding a solution comes down to finding = to satisfy
—¢ = —sin(z) or { = sin(x).

(b) For what values of £; > 0 is there a unique solution and what is it? How does the number

of solutions behave as t; — oo0?

Solution: A simple sketch of £ and sin(x) shows that if 0 < ¢; < 1 then there is a
unique solution given by z(t1) = u = p = 0, which has cost 2. Intuitively, even though
the initial state is at a maximum point of m, it is too expensive to move away from it in
a short amount of time to be worthwhile. For ¢; slightly larger than one there are three
solutions. The number of solutions is nondecreasing with ¢; and for any odd positive
integer k there is a value or range of ¢; so that there are precisely k solutions.

Another way to look at is is to note that the solutions satisfy either z = 0 or (z # 0 and

% = Sinx(gc) = sinc(z)), and looking at a plot of sinc(x) gives the same conclusions.

(¢) Let V(z,t1) denote the minimum cost when the terminal state is z and the terminal
time is ¢1. Find V(x,¢1) and use it to determine which of the solutions found in part (b)
are optimal (Your answer should depend on ¢;.)

Solution: We’ve found constant controls are optimal, so the minimum cost to reach z
at time ¢; is obtained using the control u = x/t; so that
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V(x,tl):/otl;<$>2dt+cos( ) = 5+ cosa).

3]

The solutions found in (b) correspond to the zeros of %—‘;(az,tl). As found above, there
is only one solution if 0 < t; < 1 corresponding to = 0. For ¢t; > 1 we find the second
derivative of the cost at x = 0 is negative so that x = 0 is a local maximum and is thus
not optimal. By the geometry of the situation we see that the two nonzero smallest
magnitude solutions are the optimal ones for £; > 1. One of these increases from zero to
7 as t; increases from 1 to infinity, and the other is the negative of that one. There are
no other solutions with 0 < = < 27. For any = > 27, V(x,t1) > V(x — 2m,t1) so there
are no global minima with = > 27. Note

3. [On the minimum principle with freely varying terminal time]
Section 11.2 shows how to derive the minimum principle for ¢; fixed and z(¢;) freely varying,
which is stated as Theorem 11.1, by using Lagrange multipliers. Theorem 11.4 states a version
of the minimum principle for ¢; freely varying and some of the indices of x(t) specified. In this
problem you are to explain how to derive Theorem 11.4 ' by explaining how the derivation in

'Typos: p. 218, the equations in part (b): z;(t;) should be z;(t1). In the next line it should be for j € I° not for
i€l
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Section 11.2 (starting in the middle of page 208) should be modified. Steps 1-4 are identical
except the function m has ¢ as a second argument: m(x(t1),t).

(a) What modifications are needed in Step 5 to complete the derivation of Theorem 11.47

Solution: The function 1 used to perturb z satisfies the constraint n;(t;) = 0 for i € 1
because x;(t1) is constrained to equal x1; for such i. We can still vary u enough between
top and t; to conclude that p = —V,H as before, but since only n;(t1) for j € I¢ are free,
we get p;(t1) = (.%’;(ﬁ(tl),tl) for j € I°. (There is also the constraint x;(¢;) = x1; for
i € I so there are still n constraints at ¢;.)

Since the terminal time #; can be freely varied and we assume for this part that it is
greater than ¢y, we solve % = 0. For the various terms that involve ¢; we have:

n { t';l H(2° p,u®,y)dt + ft? PTJUdt} = H(2°(t1), p(t1),u°(t1), t1) + p" (t1)2°(t1)

AT () (ty) +mla(tr), tr) }

om

— 5Tt N il
()0 + 3 Yo (pj<t1>+ e,

0

(:1:°(t1),t1)> zi(t1) p + %—T(x(tl),tl)

Adding the terms on the righthand sides gives (11.15):

85?(110(151), tl) + H(:L‘O(tl),p(tl), u°(t1), tl) =0.

Consider Theorem 11.4 in the special case I = (J; both ¢; and xz(t;) are freely varying.
The optimal terminal time ¢; could equal ¢y if running the system for a nonzero amount
of time is more expensive than the decrease it brings in the terminal cost. Explain how
the theorem can be extended to cover such case by finding a variation of (11.15) for
the case t1 = to. (Hint: Let V/(a,t1) represent the cost as a function of ¢; if a constant
control u is used. Then for ¢; = ¢y to be optimal it is necessary that g—g(ﬂ,to) > 0 for
any .)

Solution: Let t; = ty+ €. Assuming a constant control @ is used over [tg, t1], by Taylor’s
theorem:

/tOJFE (x(t), a,t)dt = €(xo, U, to)e + oe)

to

z(to + €) = o + f(wo, U, to)e + o(e€)

0 0
m((to + ), to + €) = m(w0, o) + S (0, to)e + (20, t0) f(z0, T to)e + o(e)

Therefore,

V(a,to +€) — V(a,to)
€

- [%T(xo, to) + H (xo, %—T(wo, to), 1, to)] +o(1)
or equivalently,

oV 0 0
871(@’ to) = aﬁ?(ﬂfovto) +H (930, 87;(950,750),“7750)
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So a necessary condition for ¢; = t¢ to be optimal is:

8677?(‘%0, to) + H (l‘[), %(.To, to), ’L_L,to) >0 for all w. (1)

4. [Optimal control with a free terminal time and state]
As an application of the previous problem, consider the system/performance index

11 B
0

where B > 0. As indicated in the notation, t; is variable so the problem is to find both the
control w and ¢; to minimize V' (u,¢;). There is no constraint on the terminal state z(¢1). For
simplicity, assume xg > 0.

(a)

Find the optimality conditions implied by the minimum principle for this problem.
Solution: We have /(x,u,t) = 1 +u?, m(x,t) = g.’EZ, (x,u,t) = 1.
t
u®(t) = argmin{1 + u* + p(t)u} = _1?(2)
u
—p:Vx{1+u2+pu} =0
p(t1) = Vem(z(t1), t1) = Bx(ty)
so p(t) = Bx(ty) for tg <t <t

Hence both v and p are constant in time, with u = —% and p = Bx(t;).

[Case 1: Solutions satisfying optimality necessary condition with ¢; > 0] Given a solution
with #; > 0, the necessary condition for optimality (10.15) is u?(¢1) + 1 +p(t1)u(t1) = 0.
Substituting in p = —2u gives the equation 1 — u?> = 0. From the geometry and the
assumption xg > 0 we see that u should be negative, so u = —1. Therefore p = 2 and the
final state is 2(t;) = 3. Since z(t) = xo+tu = x9—t, this case makes sense only if 2o > %,
and in that case t; = (29 — %). The total minimum cost is 21 + S (t1)? = 2z — 3.
(Note: If we seek a solution with u = 1 we get x(t) = x9 +t and p = —2 so the final
state is —%, which is impossible. There is no solution with v = 1.) In summary, there
exists a solution with ¢; > 0 satisfying the optimality condition only if x¢ > % and in
that case the optimal control is the constant control u = —1 with ¢; being the time % is
reached.

[Case 2: Solutions satisfying optimality necessary condition with ¢; = 0.] Since %—? (zo,t0)
Bz the condition (1) becomes 1 + @? + Bzot > 0 for all 4. The minimizing value of 4
is % so for t1 = ty to be an optimal solution it is necessary that 1 — (%)2 >0 or
Under what conditions on g and B is the optimal terminal time given by ¢; = 0?7
Solution: We found in part (a) that for any xg > 0 there is a unique solution satisfying
the necessary optimality conditions. The solution is t1 = 0 if 0 < 2y < %.

Explain what happens in the limit as B — co? In particular, what is the limiting problem
equivalent to and what is its solution?

Solution: Letting B — oo corresponds imposing a terminal constraint z(t;) = 0 while
keeping the time t; free. Theorem 11.4 applies in this situation with I = {1}. Com-

pared to the case above, where the terminal state was determined by the equation
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p(t1) = Vam(x(t1),t1), the terminal state is instead constrained by x(¢1) = 0. The other
optimality conditions are the same as above and imply the optimal control is constant
with v = 1 and p = 2. So the optimal solution is to use the constant control u = —1
until state 0 is reached.

5. [Stopping a pendulum in minimum time]
Consider the system dynamics 6(t) = —sin(8(t)) +eu(t) where € is a small constant. It models
the angle from vertical of a pendulum with the addition of a control. Consider the problem
of selecting a control u such that |u(t)| < 1 for all £ > 0 in order to minimize the time needed
to reach the resting state (1) = 6(t1) = 0.

(a)

Letting z1 = 0 and xo = 9, write out the equations involving the state and co-state
variables implied by the minimum principle. Identify the optimal control as a function
of the co-state variables. (You don’t need not solve the equations. Even with zero
control the state trajectories of the pendulum can’t be expressed in terms of elementary
functions.)

Solution: We have the constraint x(¢;) = v} while the terminal time ¢; is free and there
is a hard constraint on the control. So this problem fits the setup of Theorem 11.4 and
the optimality conditions there work except there is also a hard constraint on u(t) for
each ¢ as in Theorem 11.2. We have

Flw,u) = [ 2 }

—sin(x1) + eu
(=1
m=20
H(z,u,p) =1+ p1aa + p2(—sin(z1) + eu)
The optimal control is given by u = argmin,., <1 H (¥, u,p) = —sgn(pz). The equation
(11.15) of the notes given m = 0 becomes H (x(t1),u(t1),p(t1)) = 0 which together with
z(t1) = 9 and the above equation for u gives 1 — €[pa(t1)| = 0 or pa(t1) = 1.
The dynamics © = f and p = —V,H then lead to the equations

T i)
d | zo | | —sin(z1) — € sgn(p2)
dt | p1 | p2 cos(r1)

P2 wa!

with the boundary conditions z(ty) = z,, z(t1) = ¥, and pa(t;) = £1. (The boundary
conditions involve five degrees of freedom; one is due to the time ¢; being free.)

The total (kinetic plus potential) energy of the system, up to an additive constant, is
E(6,0) = %92 — cos(#). Calculate 4 E(t) and then, based on your calculation, suggest a
heuristic control.

Solution: %E(t) = 6u(t).7j2(t)'. This suggests the feedback control u(t) = —sgn(z2(t))
or, equivalently, u(t) = —sgn((t)). This makes intuitive sense — the control pushes in
the opposite direction of the velocity. This is probably equal or very close to the optimal
control when the system is far from equilibrium and € is small. But for states close to
equilibrium it is not optimal and can lead to the motion stopping at a state with 6(¢) # 0.
It would be interesting to solve part (a) numerically and compare its performance to that
of the heuristic control.



