ECE 515/ME 540: Problem Set 12 Introduction to the Minimum Principle

Due:Wednesday, December 11, 11:59pmReading:Course notes, Chapter 11

1. [Lagrange multipliers – sensitivity interpretation]

Suppose ϕ_i for $1 \leq i \leq K$ are continuously differentiable strictly convex functions on the reals such that $\phi(u_i) \to \infty$ as $|u_i| \to \infty$. For $u \in \mathbb{R}^K$ let $V(u) := \sum_{i=1}^K \phi_i(u_i)$ and $h(u) = \sum_{i=1}^K u_i$. Consider the problem

$$\min_{u} V(u) \text{ subject to } h(u) = c$$

- (a) Find the first order necessary condition for optimality using the Lagrangian $\hat{V}(u) = V(u) + p(c h(u))$ with Lagrange multiplier p.
- (b) Let v(c) denote the optimal value as a function of c, i.e. $v(c) = \min_{u:h(u)=c} V(u)$, and let p(c) denote the value of the Lagrange multiplier found in part (a). Show that v'(c) = p(c). In other words, the Lagrange multiplier is locally the ratio of change in optimal value to the change in the level c of the constraint. (Hint: To get started, fix a value of c and let u denote the corresponding optimal u vector and let p = p(c). Changing c to $c + \delta c$ for $\delta c > 0$ results in a change of the optimal u_i to $u_i + \delta u_i$ such that $0 \le \delta u_i \le \delta c$ for each i. Apply Taylor's theorem.)

2. [Local but not global optimality of minimum principle solution] Consider the system/performance index

$$\dot{x} = u$$
 $x(0) = 0$ $V(u) = \int_0^{t_1} \frac{u^2}{2} dt + \cos(x(t_1)).$

where t_1 is a fixed terminal time and the terminal state $x(t_1)$ is freely varying.

- (a) Find the optimality conditions implied by the minimum principle for this problem and simplify them as much as possible.
- (b) For what values of $t_1 > 0$ is there a unique solution and what is it? How does the number of solutions behave as $t_1 \to \infty$?
- (c) Let $V(x, t_1)$ denote the minimum cost when the terminal state is x and the terminal time is t_1 . Find $V(x, t_1)$ and use it to determine which of the solutions found in part (b) are optimal (Your answer should depend on t_1 .)

3. [On the minimum principle with freely varying terminal time]

Section 11.2 shows how to derive the minimum principle for t_1 fixed and $x(t_1)$ freely varying, which is stated as Theorem 11.1, by using Lagrange multipliers. Theorem 11.4 states a version of the minimum principle for t_1 freely varying and some of the indices of x(t) specified. In this problem you are to explain how to derive Theorem 11.4¹ by explaining how the derivation in

¹Typos: p. 218, the equations in part (b): $x_i(t_i)$ should be $x_i(t_1)$. In the next line it should be for $j \in I^c$ not for $i \in I^c$

Section 11.2 (starting in the middle of page 208) should be modified. Steps 1-4 are identical except the function m has t as a second argument: $m(x(t_1), t)$.

- (a) What modifications are needed in Step 5 to complete the derivation of Theorem 11.4?
- (b) Consider Theorem 11.4 in the special case $I = \emptyset$; both t_1 and $x(t_1)$ are freely varying. The optimal terminal time t_1 could equal t_0 if running the system for a nonzero amount of time is more expensive than the decrease it brings in the terminal cost. Explain how the theorem can be extended to cover such case by finding a variation of (11.15) for the case $t_1 = t_0$. (Hint: Let $\overline{V}(\overline{u}, t_1)$ represent the cost as a function of t_1 if a constant control \overline{u} is used. Then for $t_1 = t_0$ to be optimal it is necessary that $\frac{\partial \overline{V}}{\partial t_1}(\overline{u}, t_0) \ge 0$ for any \overline{u} .)

4. [Optimal control with a free terminal time and state]

As an application of the previous problem, consider the system/performance index

$$\dot{x} = u$$
 $x(0) = x_0$ $V(u, t_1) = \int_0^{t_1} (1 + u^2) dt + \frac{B}{2} x^2(t_1)$

where B > 0. As indicated in the notation, t_1 is variable so the problem is to find both the control u and t_1 to minimize $V(u, t_1)$. There is no constraint on the terminal state $x(t_1)$. For simplicity, assume $x_0 > 0$.

- (a) Find the optimality conditions implied by the minimum principle for this problem.
- (b) Under what conditions on x_0 and B is the optimal terminal time given by $t_1 = 0$?
- (c) Explain what happens in the limit as $B \to \infty$? In particular, what is the limiting problem equivalent to and what is its solution?

5. [Stopping a pendulum in minimum time]

Consider the system dynamics $\dot{\theta}(t) = -\sin(\theta(t)) + \epsilon u(t)$ where ϵ is a small constant. It models the angle from vertical of a pendulum with the addition of a control. Consider the problem of selecting a control u such that $|u(t)| \leq 1$ for all $t \geq 0$ in order to minimize the time needed to reach the resting state $\theta(t_1) = \dot{\theta}(t_1) = 0$.

- (a) Letting $x_1 = \theta$ and $x_2 = \dot{\theta}$, write out the equations involving the state and co-state variables implied by the minimum principle. Identify the optimal control as a function of the co-state variables. (You don't need not solve the equations. Even with zero control the state trajectories of the pendulum can't be expressed in terms of elementary functions.)
- (b) The total (kinetic plus potential) energy of the system, up to an additive constant, is $E(\theta, \dot{\theta}) = \frac{1}{2}\dot{\theta}^2 \cos(\theta)$. Calculate $\frac{d}{dt}E(t)$ and then, based on your calculation, suggest a heuristic control.