
University of Illinois Fall 2024

ECE 515/ME 540: Problem Set 11: Problems and Solutions
Linear Quadratic Regulators (LQR)

Due: Wednesday, December 4, 11:59pm
Reading: Course notes, Sections 10.3-10.7

1. [LQR example]
Consider the LTI system

ẋ =

[
0 1
0 −1

]
x+

[
1
0

]
u x(0) = x0

and infinite horizon cost
∫∞
0 ∥x∥2 + ru2dt, where r > 0.

(a) Determine what Theorem 10.6 implies about the LQR for this problem.

Solution: The system is in KCCF form and the uncontrollable matrix Ac = [−1] is
Hurwitz so the system is stabilizable (but not controllable). Also, Q = I = CTC for
C = I and A,C is observable. both parts of Theorem 10.6 apply and imply that the
closed loop system matrix Acl for the optimal feedback control is Hurwitz stable and the
matrix P̄ is positive definite.

(b) Compute by hand the LQR matrix P̄ , the optimal feedback control law, the closed loop
state matrix Acl, and the poles of the closed loop system.

Solution: Setting P̄ =

[
a b
b c

]
the algebraic Riccati equation (ARE) becomes

[
0 0

a− b b− c

]
+

[
0 a− b
0 b− c

]
+

[
1 0
0 1

]
+

1

r

[
a2 ab
ab b2

]
= 0

from which we find:

P̄ =

[ √
r r

1+
√
r

r
1+

√
r

1
2 + r

1+
√
r
− r

2(1+
√
r)2

]

or c =
1 + 2

√
r + 2r + 2r

√
r

2(1 +
√
r)2

u = −1

r
BT P̄ x = −

[
1√
r

1
1+

√
r

]
x

Acl =

[
− 1√

r

√
r

1+
√
r

0 −1

]

The poles of the closed loop system are − 1√
r
and −1. (Pole -1 is associated with the

uncontrollable stable mode and is not moved by feedback.)



(c) Comment on how the feedback law and poles vary as r gets very large (expensive control)
or very small (cheap control).

Solution: For r large the feedback multipliers get small and the controllable pole gets
close to 0 (which is the open loop pole). For r small the first feedback multiplier gets
large and the controllable pole gets large magnitude negative corresponding to a fast
response time. However, the pole -1 is not controllable so the overall response time will
be limited by that pole.

(d) Find the eigenvalues of the Hamiltonian matrix H by hand. Is your answer consistent
with part (b)?

Solution:

det(Is−H) = det


s −1 1

r 0
0 s+ 1 0 0
1 0 s 0
0 1 1 s− 1


= s det

 s+ 1 0 0
0 s 0
1 1 s− 1

+ det

 −1 1
r 0

s+ 1 0 0
1 1 s− 1


= s2(s2 − 1)− (s2 − 1)

1

r
=

(
s2 − 1

r

)
(s2 − 1).

The four eigenvalues of H are ±1,± 1√
r
, which is consistent with part (b) – they are the

two stable eigenvalues found in part (b) and their negatives.

2. [Variation of an LQR example]
Consider the same linear system model as in Problem 1.

(a) Suppose the same cost function is used as in Problem 1 but with ∥x∥2 replaced by
x21. Explain how the LQR regulator and optimal cost are different from those found in
Problem 1.

Solution: There is very little difference. The Q matrix is changed from the identity

matrix to

[
1 0
0 0

]
so the corresponding C matrix becomes C =

[
1 0

]
. The system

remains detectable and observable and Theorem 10.6 applies as before. We find:

P̄ =

[ √
r r

1+
√
r

r
1+

√
r

r
1+

√
r
− r

2(1+
√
r)2

]

The only difference is that the term 1
2 is dropped from the bottom right entry of P̄ . In

other words, the optimal cost V o(x) = xT P̄ x is smaller by 1
2x2(0)

2. That is due to the
fact that

∫∞
0 (x2(t))2dt =

∫∞
0 (x2(0)e

−t)2dt = x22(0)
∫∞
0 e−2tdt = 1

2x2(0)
2 no matter what

control is used. The same feedback control is optimal and Acl and the closed loop poles
are the same as in Problem 1.

(b) The change in part (a) gives rise to a SISO system. Find the open loop transfer function
P (s) = C(Is−A)−1B for part (a) and find the set of all solutions to the symmetric root
locus equation (10.31) in the course notes, namely, 1+ 1

rP (s)P (−s) = 0. Do you recover
the same two negative closed loop roots as before? Explain.
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Solution: Computation as usual yields P (s) = C(Is − A)−1B = 1
s . At first this might

seem surprising but since transfer functions don’t take into account the uncontrollable
subsystem we get the same transfer function as a pure integrator: ẋ1 = u. The symmetric
root locus equation becomes 1 − 1

rs2
= 0 which has solutions s = ± 1√

r
. Therefore this

reflects only the controllable stable pole − 1√
r
and its negative. It makes sense that

since the system is not minimal (because it is not observable), the symmetric root locus
equations would pertain to a minimal system model realization only.

(c) Suppose the same cost function is used as in Problem 1 but with ∥x∥2 replaced by
x22. Explain how the LQR regulator and optimal cost are different from those found in
Problem 1. Find P̄ and the optimal control for this variation.

Solution: There is a huge difference. The Q matrix is changed from the identity matrix

to

[
0 0
0 1

]
so the corresponding C matrix becomes C =

[
0 1

]
. The system is no

longer observable and it is not even detectable, so Theorem 10.6 does not apply. Since
the control cannot effect x2 the optimal choice is to let u(t) = 0 for all t. We then see

that P̄ =

[
0 0
0 1

2

]
. Also Acl = A so the closed loop poles are 0 and 1. Acl is not

Hurwitz. We see that x2(t) → 0 and x1(t) → x1(0) + x2(0)/2 as t → ∞.

3. [LQR with no control]
Consider an LQR problem for an LTI system of the form ẋ = Ax with cost

∫∞
0 xTQx dt

where Q = CTC for some matrix C. In other words, it is a general infinite horizon LQR
problem except B = 0.

(a) Under what conditions on A and C does Theorem 10.6 part (i) apply and what does it
imply under those conditions? Has the ARE appeared earlier in the course?

Solution: The system is stabilizable if and only if it is stable – meaning A is Hurwitz.
If A is Hurwitz the system is also detectable. So part (i) of Theorem 10.6 applies if A is
Hurwitz. If A is Hurwitz we can conclude there exists a positive semi-definite solution
to the ARE which is unique in the class of positive semi-definite matrices. The ARE in
this case is AT P̄ + P̄A +Q = 0, which is the Lyapunov stability equation encountered
in Chapter 4. See a connection to the proof of Theorem 4.6.

(b) Under what conditions on A and C does Theorem 10.6 part (ii) apply and what does it
imply under those conditions?

Solution: In order for Theorem 10.6 to apply we need to assume that A is Hurwitz (so
(A,B) is detectable) and also that (A,C) is observable. In this case, in addition to the
conclusions in part (i), we know that P̄ is positive definite.

4. [Stable subspace of the Hamiltonian matrix for LQR]
Consider the LQR problem for the LTI system ẋ = Ax + Bu and infinite horizon cost∫∞
0 xTQx + uTRu dt such that Q = CTC. Assume R is positive definite, (A,B) is stabi-
lizable, and (A,C) is detectable. Let P̄ , Acl and H be as in Chapter 10 of the notes.

(a) Show that H
[

I
P̄

]
=

[
I
P̄

]
Acl.

Solution: We need to show[
A −BR−1BT

−Q −AT

] [
I
P̄

]
=

[
I
P̄

]
Acl
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or equivalently

A−BR−1BT P̄ = Acl (1)

AT P̄ +Q = −P̄Acl (2)

Equation (1) gives the correct expression for Acl; it is the closed loop matrix A−BK for
the optimal feedback control u = −Kx for K = R−1BT P̄ . Substituting this expression
for Acl into (2) reduces the equation to the ARE.

(b) Show that eHt

[
I
P̄

]
=

[
I
P̄

]
eAclt.

Solution: By part (a) and argument by induction on k, Hk

[
I
P̄

]
=

[
I
P̄

]
Ak

cl for

k ≥ 0. Multiplying both sides by tk/k! and summing over k from 0 to ∞ yields the
equation to be shown.

(c) Part (b) shows that the columns of

[
I
P̄

]
span the stable subspace of H. This implies

the following method for finding P̄ using H. First identify a 2n×n matrix with columns
that span the stable subspace of H and then do elementary column operations to make
the upper half of the matrix the identity matrix. Then the bottom half will be P̄ .
Illustrate this method by using it to find the P̄ matrix P̄ = [p] for the scalar LQR
problem ẋ = ax+ bu with cost

∫∞
0 qx2+ ru2 dt. Verify your answer by comparing to the

solution of the ARE.

Solution: The characteristic polynomial of H =

[
a −b2/r

−c2 −a

]
is s2 − a2 − b2q/r,

which has roots λ1 = −
√

a2 + b2q/r and λ2 =
√
a2 + b2q/r. The eigenvector v1 for

the stable root λ1 is determined by (λ1I − H)v1 = ϑ. Assuming v1 is scaled so it has

the form v1 =

[
1
p

]
yields the equation

[
−
√

a2 + b2q/r − a b2/r
] [ 1

p

]
= 0 or

p = r
b2

[√
a2 + b2c2/r + a

]
. This is also the positive solution of the ARE which in this

case reduces to b2p2

r − 2ap− c2 = 0.

5. [An observability equivalence]
Let Q = CTC. Show that (A,C) is an observable pair if and only if (A,Q) is an observable
pair. (Hint: Apply the eigenvector criterion for observability – closely related to the Hautus
Rosenbrock criterion.)

Solution: By the eigenvector criterion, (A,C) is observable if and only if Cv ̸= ϑ for
every eigenvector v of A and (A,CTC) is observable if and only if CTCv ̸= ϑ for every
eigenvector v of A. So it is enough to show that Cv ̸= ϑ if and only if CTCv ̸= ϑ for any
vector v or equivalently, Cv = ϑ if and only if CTCv = ϑ for any vector v.

If Cv = ϑ then left multiplying both sides by CT implies CTCv = ϑ. If CTCv = ϑ then
left multiplying both sides by vT yields vTCTCv = 0 or equivalently ∥Cv∥2 = 0 which
is equivalent to Cv = ϑ.
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