ECE 515/ME 540: Problem Set 10: Problems and Solutions Dynamic programming and the HJB equation

Due: Wednesday, November 20, 11:59pm Reading: Course notes, Sections 10.1-10.2

1. [A discrete time and space dynamic programming problem]

Consider the transition cost matrix L with entries $L(i, j)$ and terminal cost vector m with entries $m(i)$ for i, j in the state space $S = \{1, 2, 3, 4\}$:

The cost of a trajectory x_0, x_1, \ldots, x_T in the state space is $\sum_{t=0}^{T-1} L(x_t, x_{t+1}) + m(x(T))$. Let $V^{\circ}(i,t)$ be the minimum cost over all trajectories of length $T-t$ that start in state i at time t, for $i \in S$ and $t \in \{0, 1, ..., T\}$.

(a) Write out the discrete time dynamic programming equations for determining V° from L and m.

Solution: $V^{\circ}(i, t-1) = \min_{j \in S} L(i, j) + V^{\circ}(j, t)$ for $t \leq T$ with the boundary condition $V^{\mathsf{o}}(i,T) = m(i).$

(b) Find
$$
V^{\circ}(j, t)
$$
 for $j \in S$ and $0 \le t \le 10$ for $T = 10$.

- (c) What is the minimum cost trajectory from state 4 at time 0 to state 4 at time 10, again assuming $T = 10$ and including the terminal cost? Solution: 41232323234
- (d) Is $V^{\circ}(j,0)$ bounded as $T \to \infty$? Explain why.

Solution: Yes. Trajectories can cycle between states 2 and 3 with zero cost. In fact we see that a pattern emerges and the columns are alternating for $t \leq T-4$. So $V^{\circ}(j,t) \leq 24$ for all $t \leq T-4$.

2. [A simple optimization problem]

Consider the LTI system and cost function:

$$
\dot{x} = u
$$
 $x(0) = 0$ $V(u) = \int_0^T u^4(\tau) d\tau + (x(T) - b)^4$

where b and T are known constants with $T > 0$.

(a) Find the minimum cost assuming that the control u is constant in time: $u(\tau) = \bar{u}$ for $0 \leq \tau \leq T$ where \bar{u} should be selected depending on b and T to minimize the cost. **Solution:** $\bar{V} = \min_{\bar{u}} T \bar{u}^4 + (T\bar{u} - b)^4$. The optimal choice of \bar{u} is $\frac{b}{1+T}$ yielding cost $\bar{V} = \frac{b^4}{(1+7)}$ $\frac{b^4}{(1+T)^3}$.

(b) It can be shown using Jensen's inequality that constant controls are optimal. Using that fact and the answer to part (a), derive an expression for the value function $V^{\circ}(x,t)$ for $x \in \mathbb{R}$ and $t \leq T$.

Solution: $V^{\circ}(t, t)$ is equal to the minimum cost for the original problem with T replaced by T – t and b replaced by $b-x$. Therefore, $V^{\circ}(x,t) = \frac{(b-x)^4}{(1+T-t)}$ $\frac{(b-x)^2}{(1+T-t)^3}$ and the optimal control is given by $u = \frac{b-x}{1+T}$ $\frac{b-x}{1+T-t}$.

(c) Write out the HJB equation including the boundary condition and verify that V° as found in part (b) is a solution. This gives a second proof that constant controls are optimal for this problem.

Solution: The HJB equation is

$$
-\frac{\partial V^{\mathsf{o}}}{\partial t} = \min_{u} \left\{ u^4 + \frac{\partial V^{\mathsf{o}}}{\partial x} u \right\} \qquad V^{\mathsf{o}}(x,T) = (x-b)^4
$$

Towards verifying that V° from part (c) is a solution we check that it satisfies the boundary condition and we find the minimum of the Hamiltonian: $\min_u \{u^4 + pu\}$ $-3\left(\frac{p}{4}\right)$ $\left(\frac{p}{4}\right)^{4/3}$ where the minimizer is $u = -\left(\frac{p}{4}\right)^{4/3}$ $\frac{p}{4}$, $\frac{1}{3}$. So the HJB equation becomes $-\frac{\partial V^{\circ}}{\partial t}$ = $-3\left(\frac{1}{4}\right)$ 4 $\frac{\partial V^{\circ}}{\partial x}$ a which is readily verified.

3. [HJB for an infinite horizon optimal control problem]

Problem 10.7.1 of the course notes.

Solution: (a) To avoid trivialities we assume that for any x_0 there is a control such that the cost is finite. In that case the derivation of the HJB equation in the notes goes through with $t_1 = \infty$. Theorem 10.1 still holds.

(b) Since the function f and running cost function ℓ are not time dependent the value function $V^{\circ}(x,t)$ will not depend on t. So we can write $V^{\circ}(x,t) = J^{\circ}(x)$ and in the HJB equation (10.5) in the notes, $\frac{\partial V^{\circ}}{\partial t} = 0$. The HJB equation thus becomes

$$
\min_{u} \left[\ell(x, u) + \frac{dJ^{\circ}(x)}{dx} f(x, u) \right] = 0 \tag{1}
$$

Minimizing with respect to u we get the simultaneous equations for u and $\frac{dJ^o(x)}{dx}$:

$$
\ell(x, u) + \frac{dJ^{\circ}(x)}{dx} f(x, u) = 0
$$

$$
\frac{\partial \ell(x, u)}{\partial u} + \frac{dJ^{\circ}(x)}{dx} \frac{\partial f(x, u)}{\partial u} = \vartheta_{1 \times m}
$$

Of course setting the gradient with respect to u to zero could pick out a local maximum or critical point – not necessarily a minimum, so we may have introduced multiple solutions to sort out later.

(c) For the simple integrator problem, $f(x, u) = u$ and $\ell(x, u) = u^2 + x^4$. The above

equations become

$$
u^{2} + x^{4} + \frac{dJ^{o}(x)}{dx}u = 0
$$

$$
2u + \frac{dJ^{o}(x)}{dx} = 0
$$

The second equation gives $\frac{dJ^{\circ}(x)}{dx} = -2u$. Substituting into the first equation gives x^4 – $u^2 = 0$. From the geometry of the problem we take the solution $u = -\text{sgn}(x)x^2$. This gives the equation

$$
\frac{dJ^{\rm o}(x)}{dx}=2{\rm sgn}(x)x^2.
$$

Since $J^{\circ}(0) = 0$ we can integrate to find $J^{\circ}(x) = \frac{2}{3}|x^3|$. Let's check to make sure this choice satisfies the HJB equation (1). It becomes

$$
\min_u\left[u^2+x^4+2x^2\mathrm{sgn}(x)u\right]=0
$$

which is indeed satisfied.

In summary, the optimal control has the feedback form: $u = -sgn(x)x^2$ and the minimum cost for initial state x is $J^{\circ}(x) = \frac{2}{3}|x^3|$.