University of Illinois Fall 2024

ECE 515/ME 540: Problem Set 10: Problems and Solutions
Dynamic programming and the HJB equation

Due: Wednesday, November 20, 11:59pm
Reading: Course notes, Sections 10.1-10.2

1. [A discrete time and space dynamic programming problem]
Consider the transition cost matrix L with entries L(i,j) and terminal cost vector m with
entries m(i) for ¢, j in the state space S ={1,2,3,4}:
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The cost of a trajectory zg,x1,...,z7 in the state space is Z?:_ol L(zy, xe41) + m(x(T)). Let

V°(i,t) be the minimum cost over all trajectories of length T — ¢ that start in state ¢ at time
t,forie Sandte{0,1,...,T}.

(a) Write out the discrete time dynamic programming equations for determining V° from L
and m.
Solution: V°(i,t — 1) = minjeg L(i,5) + V°(j,t) for t < T with the boundary condition
Ve, T) = m(i).
(b) Find V°(j,t) for j € S and 0 < ¢ < 10 for T' = 10.
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(¢c) What is the minimum cost trajectory from state 4 at time 0 to state 4 at time 10, again
assuming 7" = 10 and including the terminal cost?
Solution: 41232323234

(d) Is V°(4,0) bounded as T' — oco? Explain why.

Solution: Yes. Trajectories can cycle between states 2 and 3 with zero cost. In fact we
see that a pattern emerges and the columns are alternating for t < T'—4. So V°(j,t) < 24
forallt <T —4.

Solution: V° =

2. [A simple optimization problem]
Consider the LTT system and cost function:

where b and T are known constants with 7" > 0.

(a) Find the minimum cost assuming that the control w is constant in time: u(7) = u for
0 < 7 < T where @ should be selected depending on b and T to minimize the cost.



Solution: V = ming Ta* + (T'@ — b)*. The optimal choice of @ is 2= yielding cost

1+T
= b4
V= (a+71)3°

(b) It can be shown using Jensen’s inequality that constant controls are optimal. Using that
fact and the answer to part (a), derive an expression for the value function V°(x,t) for
rzeRandt <T.

Solution: V°(t,t) is equal to the minimum cost for the original problem with 7" replaced

by T'—t and b replaced by b — x. Therefore, V°(x,t) = % and the optimal control
b—zx

4Tt

(c) Write out the HJB equation including the boundary condition and verify that V° as
found in part (b) is a solution. This gives a second proof that constant controls are
optimal for this problem.

is given by u =

Solution: The HJB equation is

_ov = min {u4 + o u} Vo(x,T) = (x — b)*

Towards verifying that V° from part (c) is a solution we check that it satisfies the
boundary condition and we find the minimum of the Hamiltonian: min,{u* + pu} =

1 o
-3 (%)4/3 there the minimizer is u = — (£)*. So the HJB equation becomes _aalt =
-3 (i 68‘; 0) /3 which is readily verified.

3. [HJIB for an infinite horizon optimal control problem]
Problem 10.7.1 of the course notes.

Solution: (a) To avoid trivialities we assume that for any xo there is a control such
that the cost is finite. In that case the derivation of the HJB equation in the notes goes
through with ¢; = oo. Theorem 10.1 still holds.

(b) Since the function f and running cost function ¢ are not time dependent the value

function V°(z,t) will not depend on ¢. So we can write V°(x,t) = J°(z) and in the HJB

equation (10.5) in the notes, % = 0. The HJB equation thus becomes

°(z)

fla,u)| =0 (1)

Minimizing with respect to u we get the simultaneous equations for v and dJ;ix) :

Uz, u) + d‘];f) flz,u) =0

o(z,u)  dJ°(x) Of(z,u)
ou * dx ou

= ﬁlxm

Of course setting the gradient with respect to u to zero could pick out a local maximum
or critical point — not necessarily a minimum, so we may have introduced multiple solu-
tions to sort out later.

(c) For the simple integrator problem, f(z,u) = u and £(x,u) = u? + x*. The above



equations become

dJe
u? + 2t + 7<m)u =0
dx
dJe
2u + (z) =0
dx
The second equation gives %X;) = —2u. Substituting into the first equation gives z* —
u? = 0. From the geometry of the problem we take the solution u = —sgn(x)x2. This
gives the equation
dJ°
daix) = 2sgn(x)z?.

Since J°(0) = 0 we can integrate to find J°(z) = Z|23|.
Let’s check to make sure this choice satisfies the HJB equation (1). It becomes

min [u2 + 2t + 2:c2sgn(:c)u] =0
u

which is indeed satisfied.

In summary, the optimal control has the feedback form: u = —sgn(z)z? and the mini-
mum cost for initial state x is J°(z) = Z[23|.



