ECE 515/ME 540: Problem Set 9

Frequency domain stabilization / review of earlier material

Due: Wednesday, November 6, 11:59pm

Reading: Course notes, Chapter 8.2, 9 (also review Chapters 1-8.1)

1. [Frequency domain approach to stabilize harmonic oscillator]

Consider the harmonic oscillator with position measurements given in state space form by:

$$
\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u
$$

$$
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x.
$$

We found in problem 4 of problem set 7 that using control $u = -K\hat{x}$ with the observer given by $\dot{\hat{x}} = (A - BK - LC)\hat{x} + Ly$ with $K = \begin{bmatrix} 3 & 4 \end{bmatrix}$ and $L = \begin{bmatrix} 16 \\ 63 \end{bmatrix}$ places the poles of the closed loop system at $-2,-2$, -8 , -8 .

- (a) Find the transfer function $P(s)$ of the plant A, B, C. (Hint: It is given by $P(s)$ = $C(Is-A)^{-1}B.$
- (b) Find the transfer function $G(s)$ of the stabilizing controller described above with input y and output $-u$.
- (c) By our design, using this controller as pictured in Fig. 8.1 of the notes results in a stable system so that y will converge to zero. Now consider an input $r(t)$ with Laplace transform $R(s)$ that is added to the plant input as a perturbation of U so that the closed loop transfer function for R to Y is given by $P_{cl}(s) = \frac{P(s)}{1+G(s)P(s)}$. Rederive your answer to part (b) by using the frequency domain method of Section 8.2. That is, write $G(s) = \frac{n(s)}{d(s)}$ and solve the equations for $n(s)$ and $d(s)$ that arise from making the poles of P_{cl} equal to -2,-2,-8,-8.

2. [BIBO stability problem]

Consider the following third order state space model

$$
\begin{aligned}\n\dot{x} &= \begin{bmatrix} 1 & -2 & 3 \\ 0 & -4 & 5 \\ 0 & 0 & -6 \end{bmatrix} x + Bu \\
y &= Cx + Du\n\end{aligned}
$$

such that the matrices B, C, D have dimensions $3 \times m$, $p \times 3$ and $p \times m$, respectively, where m and p can be greater than one (i.e. MIMO case).

- (a) Under what conditions on the B, C and D matrices is the system BIBO stable? Make your answer as explicit as possible.
- (b) Under what conditions on the B, C and D matrices does there exist a state feedback $u = -Kx + r$ such that the closed loop system mapping r to y is BIBO stable?

3. [On stability of a predator prey model]

Consider the following Lotka-Volterra type predator prey model where α is a positive constant and we consider states with $x_1 \geq 0$ and $x_2 \geq 0$:

$$
\dot{x_1} = x_1(\alpha - x_2)
$$

$$
\dot{x_2} = x_2(x_1 - 1)
$$

- (a) Which coordinate of x represents the size or density of the predator population and which coordinate represents the size or density of the prey population? Explain.
- (b) Find all equilibrium points. For each equilibrium point find the linear system approximation of the dynamics in a neighborhood of the equilibrium and find whether Lyapunov's first method (i.e. looking at stability of the linear system) implies any stability property of the nonlinear system for each equilibrium point.
- (c) Can you deduce and additional stability property for the equilibrium points you found by using the function $V(x) = x_1 - \ln(x_1) + x_2 - \alpha \ln(x_2)$ defined on the open quadrant ${x_1 > 0, x_2 > 0}$?

4. [Hermitian symmetric matrices]

Suppose Q is an $n \times n$ Hermitian symmetric matrix, meaning $Q = Q^*$.

- (a) Show that the eigenvalues of Q are real valued. (Hint: For any vector v, v^*Qv is real valued because it is equal to its complex conjugate.)
- (b) Show that the eigenvectors of Q for different eigenvalues are orthogonal.
- (c) Let V be an $n \times n$ matrix with columns being an orthonormal basis of eigenvectors of Q (can be shown to exist) and let Λ be the diagonal matrix with the corresponding eigenvalues down the diagonal. Show that $Q = V \Lambda V^*$.