
University of Illinois Fall 2024

ECE 515/ME 540: Problem Set 8: Problems and Solutions
Feedback: Tracking and Disturbance Rejection

Due: Wednesday, October 30, 11:59pm
Reading: Course notes, Chapter 8 (also review Chapter 7)

1. [Controllability indices]
Consider the controllability matrix C = [B AB A2B · · · An−1B] for a linear system model,
where A is n×n and B is n×m for positive integers m,n. Let b1, . . . , bm denote the columns
of B. Let C̄ be obtained by reordering the columns of C as follows (such reordering does not
change the column span):

C =
[
b1 Ab1 A2b1 · · · An−1b1 b2 Ab2 · · · An−1b2 b3 · · · An−1bm

]
.

A basis for the column span of C, or equivalently, the range space of C, can be found by the
following algorithm. Consider the columns of C one by one from left to right, and add any
column to the basis that is not in the span of the columns before it.

(a) Show that whenever a column of the form Ajbi is not included in the basis then any
column of the form Aj′bi with j′ > j will not be included. (Hint: Start by considering
the columns with i = 1.)

Solution: Suppose there exists j1 such that Aj1b1 is the first column not selected by the
algorithm. (If not, the algorithm will terminate before considering any columns of the
form Aj1bi with i ≥ 2.) We will show by induction on j that Ajb1 ∈ span{b1, . . . , Aj−1b1}
for j1 ≤ j ≤ n − 1, and hence none of those columns will be selected by the algorithm.
The base case j = j1 is true by the definition of j1. For the induction step, suppose that
for some j with j1 ≤ j ≤ n − 2 that Ajb1 ∈ span{b1, Ab1, . . . , Aj−1b1} Then Aj+1b1 =
A(Ajb1) ∈ Aspan{b1, Ab1, . . . , Aj−1b1} ⊂ span{b1, Ab1, . . . , Ajb1} so the statement is
true for j + 1 and the proof by induction is complete. So far we have proved that once
a column of the form Ajb1 is not included in the basis by the algorithm then no other
columns of that form are added. After finishing with the columns of the form Ajb1 the
span, Σ1, of the columns selected up to that point is invariant under multipliction by A.
In other words, AΣ1 ⊂ Σ1.

Using a similar argument as above we can show by induction on the index i of the
columns of B that if any column of the form Ajbi is not included then the algorithm will
not select any more columns with the same bi and just after that, the span of the space
of columns σi selected up to that point is invariant under A.

(b) Let µi denote the number of columns of the form Ajbi that were added to the basis by
the algorithm. The numbers µ1, . . . , µm are called the controllability indices of (A,B).
Under what condition on the controllability indices is (A,B) controllable? (Controlla-
bility indices are related to the so-called Luenberger controllable canonical forms that
generalize the CCF we’ve seen for SISO systems and which can be found by elementary
row and column operations operating on the A and B matrices.)

Solution: (A,B) is controllable if and only if µ1 + · · ·+ µm = n.



(c) According to the theory of Luenberger controllable canonical forms, any state space
model with n = 4,m = 2 and controllability indices µ1 = µ2 = 2 can be put into the
following form by a state space transformation for some values of the constants indicated:

A =


0 1 0 0
a b c d
0 0 0 1
e f g h

 B =


0 0
1 x
0 0
0 1


For what values of the constants are the controllablity indices for the above (A,B) given
by µ1 = µ2 = 2? (This shows that not all values of the constants work.)

Solution: b1 and Ab1 are linearly independent. The next thing we need to hold is that
A2b1 ∈ span[b Ab], or equivalently

b
a+ b2 + df

f
e+ bf + fh

 ∈ R


0 1
1 b
0 0
0 f

 (1)

From the third and fourth rows we see (1) holds if and only if f = e = 0. It then remains
to check that appending columns b2 and Ab2 yields a full rank matrix. That matrix is

0 1 0 x
1 b x bx+ d
0 0 0 1
0 0 1 h


It has full rank (elementary column operations can make it upper triangular) so no more
columns can be added by the algorithm. In summary, the given pair has controllability
indices µ1 = µ2 = 2 if and only if e = f = 0.

2. [Eigenvector criterion equivalent to PBH criterion]
The Papov - Belevitch - Hautus criterion (aka Hautus Rosenbrock criterion) for controllability
of (A,B) where A is n×n and B is n×m is that

[
(λI −A) B

]
have rank n (i.e. full rank)

for all λ ∈ C. (And the criterion for detectability is that the same hold for all λ ∈ C with
Re(λ) ≥ 0 – but this problem focuses on controllability.)

(a) Show that the PBH criterion is equivalent to the following eigenvector criterion: For
every left eigenvector r∗ of A it holds that r∗B ̸= ϑ. (By left eigenvector of A we mean
r∗A = λr∗ for some λ ∈ C or equivalently r is a right eigenvector of A∗.)

Solution: The PBH criterion doesn’t hold if and only if there is λ ∈ C and a vector r
so that r∗

[
(λI −A) B

]
= ϑ which is equivalent to λr∗ = r∗A and r∗B = ϑ which is

equivalent to the eigenvector criterion not holding.

(b) Give a direct proof that if the eigenvector criterion does not hold then the controllability
matrix C is not full rank.

Solution: If r∗ is a left eigenvector of A and if r∗B = ϑ then r∗AiB = λir∗B = ϑ for
0 ≤ i ≤ n− 1. That is, r∗C = ϑ which implies that C is not full rank.

(c) Conversely we show that if the controllability matrix C is not full rank then the eigenvec-
tor criterion for controllability does not hold. The column span of C is Σc, the controllable
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subspace. (Some notation: A∗Σ⊥
c := {A∗v : v ∈ Σ⊥

c }.) (i) Show that A∗Σ⊥
c ⊂ Σ⊥

c (i.e.
Σ⊥
c is invariant under A∗). Therefore, if C is not full rank then Σ⊥

c has dimension one
or more and A∗ restricted to Σ⊥

c has at least one eigenvalue and at least one eigenvector
r for that eigenvalue, because relative to any basis for Σ⊥

c the linear transformation is
equivalent to multiplication by a square matrix. (ii) Show that the existence of such r
implies that the eigenvector criterion does not hold.

Solution: (i) Combining the definitions of Σ⊥
c and A∗Σ⊥

c we have

A∗Σ⊥
c = {A∗v : v∗AkB = ϑ for 0 ≤ k ≤ n− 1}
= {A∗v : v∗AkB = ϑ for 0 ≤ k ≤ n} by Caley-Hamilton

⊂ {A∗v : v∗AkB = ϑ for 1 ≤ k ≤ n}
= {A∗v : (A∗v)∗Ak−1B = ϑ for 1 ≤ k ≤ n} ⊂ Σ⊥

c

(ii) For such r, r∗ is a left eigenvector of A and r∗B = ϑ because the columns of B are
in Σc. Thus the eigenvector criterion does not hold.

3. [Sorting out modes if all eigenvalues are distinct]
Consider a standard LTI model with matrices A,B,C,D such that A has n distinct eigenvalues
λ1, . . . , λn. LetM = [v1 · · · vn] be the modal matrix formed by the corresponding eigenvectors
and let r1∗, . . . , rn∗ be the corresponding dual basis, which are the rows of M−1 and are also
left eigenvectors of A.

(a) Write down the model Ā, B̄, C̄, D̄ obtained using the state transformation x̄ = M−1x.
Carefully identify the rows, Bi, of B̄ and the columns, γi, of C̄ in terms of B,C and the
eigenvectors.

Solution: (This was done in class when controllability (Chapter 5) and observability
(Chapter 6) were discussed.)

˙̄x =


λ1

λ2

. . .

λn

 x̄+


B1

B2

...
Bn


︸ ︷︷ ︸

B̄

u

y =
[
γ1 γ2 · · · γn

]︸ ︷︷ ︸
C̄

x̄+Du

where Bi = ri∗B, γi = Cvi, and D̄ = D.

(b) Under what conditions on the λi, B
i, γi is (A,B) stabilizable? Justify your answer di-

rectly, although you should also see that it is consistent with the PBH criterion for
stabilizability.

Solution: (A,B) is stabilizable if and only if Bi ̸= ϑ for each i such that Re(λi) ≥ 0. If
there exists i such that Bi = ϑ and Re(λi) ≥ 0 then the control has no effect on x̄i(t)
and x̄i(t) = x̄(0)eλit ↛ 0. If Bi ̸= ϑ for all i such that Re(λi) > 0 then those coordinates
form a controllable block because the functions eλit are linearly independent. (Recall
discussion of controllability.)
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(c) Under what conditions on the λi, B
i, γi is (A,C) detectable? Justify your answer directly,

although you should also see that it is consistent with the PBH criterion for detectability.

Solution: (A,C) is detectable if and only if γi ̸= ϑ for each i such that Re(λi) ≥ 0. If
there exists i such the γi = ϑ and Re(λi) ≥ 0 then xi has no effect on y and x̄i(t) =
x̄(0)eλit ↛ 0. If γi ̸= ϑ for all i such that Re(λi) > 0 then those coordinates form an
observable block because the functions eλit are linearly independent.

(d) Suppose the matrix B̄ above is given by

B̄ =


0 79 0
1 −14 0
0 0 43
0 0 1

−19 0 19


What are the controllability indices of the original system? Is it controllable? (Hint:
The indices are determined by which elements of B̄ are nonzero.)

Solution: (µ1, µ2, µ3) = (2, 1, 2), because two rows have a nonzero entry in column one.
Of the remaining rows one has a nonzero entry in column two. And of the rows still
remaining, two columns have a nonzero entry in the third column. Since the indices sum
to n the original system is controllable.

4. [Failure of static output feedback for the harmonic oscillator]
Consider the harmonic oscillator with position measurements satisfying ẍ+ x = u, y = x.

(a) Show that it cannot be asymptotically stabilized (i.e. making x(t) → 0) by static output
feedback u = −ky no matter what real value of k is chosen.

Solution: With u = −ky the state satisfies ẍ = −(1 + k)x or in state space form with
x1 = x and x2 = ẋ,[

ẋ1
ẋ2

]
=

[
0 1

−(1 + k) 0

] [
x1
x2

]
y =

[
1 0

] [ x1
x2

]
The eigenvalues of A are ±j

√
1 + k. If k ≥ −1 then both eigenvalues are on the imatinary

axis and if k < −1 then one eigenvalue is strictly positive. Thus k cannot be selected to
make the system asymptotically stable.

Note: In general the solution y = x has the form y(t) = aej(
√
1+k)t + be−j(

√
1+k)t which

can be expressed as A cos(
√
1 + k t + ϕ) if k ≥ −1 and is the sum of two exponentials

with real and opposite exponents if k < −1.

(b) Derive a static state feedback to stabilize the system and place the closed loop poles at
-2 and -2.

Solution: The system model is given by:

ẋ =

[
0 1
−1 0

]
x+

[
0
1

]
u

y =
[
1 0

]
x

Using state feedback u = −Kx where K = [k1 k2] yields the closed loop system

ẋ =

[
0 1

−1− k1 −k2

]
x+

[
0
1

]
u

y =
[
1 0

]
x
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Setting the characteristic polynomial for Acl equal to (s+2)2 yields s2 + k2s+1+ k1 =
s2 + 4s+ 4 or [k1 k2] = [3 4].

(c) Derive a dynamic output feedback control that stabilizes the system using an observer
and the certainty equivalence to state feedback, using the methodology of Chapter 7 of
the notes. To be definite, if possible, make the poles of the observer -8 and -8 and the
poles of the state feedback portion -2 and -2.

Solution: The joint model for the state and observer is given by:

ẋ = Ax−BKx̂

˙̂x = (A−BK)x̂+ L(y − Cx̂)

By the separation principle we take [k1 k2] = [3 4] as in part (b) and then find

L =

[
L1

L2

]
so that A− LC has eigenvalues at -8, -8. The result is L =

[
16
63

]
.

5. [Amplitude and phase tracking via the internal model principle]
Consider again the harmonic oscillator with position measurements satisfying ẍ + x = u,
y = x. Note that if u = 0 the oscillation will happen at the frequency 1 radian/sec (rad/s).

(a) Suppose we wish to apply a control law to double the oscillator frequency from its natural
frequency of 1 rad/s to 2 rad/s. Find a static state feedback control law for doing so.

Solution: By inspection we see that using u = −3x makes the closed loop differential
equation ẍ = −4x which has general solution of the form A cos(2t + ϕ). OR we could
look at the second order state space model as in part (a) of the previous problem and see
taking k = 3 makes the closed loop system eigenvalue ±j

√
1 + k = ±2j. Equivalently,

we use K = [k1 k2] = [3 0] for the second order state space model.

(b) Suppose you wish not only to control the frequency to be 2 rad/s, but you wish to
control the amplitude and phase of the output so that it tracks the reference signal r(t) =
5 cos(2t). Using the internal model principle, devise a dynamic state feedback controller
to achieve this objective. You should find a fourth order system model. Describe whether
you can place the four poles arbitrarily and if so, describe how that would be done. (Hint:
Since (s2 + 4)r = 0 try using the control u such that (s2 + 4)u = v, let z = (s2 + 4)x
and find the fourth order system with states given by z, e, ė where e = y(t) − r(t), and
control v. Then select a state feedback form for v, namely v = [−k1 − k2]z − k3e− k4ė
and translate this to describe the dynamic state feedback controller u.)

Solution: Let z, e, v be defined as in the hint. The state equations for the oringal system
model are

ẋ =

[
0 1
−1 0

]
x+

[
0
1

]
u

y =
[
1 0

]
x

We then find ż =
...
x + 4ẋ = A(ẍ+ 4x) +B(ü+ 4u) = Az +Bv. Also

ë = ÿ − r̈ = Cẍ − r̈ = C(z − 4x) + 4r = Cz − 4e. This gives rise to the system state
model

d

dt

 ż
e
ė

 =

 A 0 0
0 0 1
C −4 0


︸ ︷︷ ︸

Ã

 z
e
ė

+

 B
0
0


︸ ︷︷ ︸

B̃

v
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Expanding out the submatrices in Ã and B̃ gives:

Ã =


0 1 0 0
−1 0 0 0
0 0 0 1
1 0 −4 0

 B̃ =


0
1
0
0


The controllability matrix for (Ã, B̃) is given by

C̃ =


0 1 0 −1
1 0 −1 0
0 0 0 1
0 0 1 0


and is seen to be full rank, so state feedback can be used to place the four poles of this
system arbitrarily. More specifically, the closed loop matrix is

Ãcl =


0 1 0 0

−1− k1 −k2 −k3 −k4
0 0 0 1
1 0 −4 0


and k1, . . . , k4 can be chosen to place the eigenvalues of Ãcl arbitrarily.

The realizable control law u is given by

u =
1

1 + s2
v

=
1

1 + s2
[−k1 k2]z − k3e− k4ė

= [−k1 − k2]x+

(
−k3 − k4s

s2 + 4

)
e

(c) The controller you found in part (b) was based on state feedback. Briefly describe how
an observer can be introduced to derive an output feedback control law in an attempt
to achieve the same objective as in part (b).

Solution: The idea is to replace x in the control law by x̂ where ˙̂x = Ax̂+L(y−Cx̂)+Bu.
This would increase the order of the underlying system to six. By the separation principle
we would select L to place the eigenvalues of (A−LC) to have negative real parts with
greater magnitude than those placed for the fourth order system above. Due to the
underlying tracking in part (b) more analysis is required to see the performance of this
observer in this context. NOTE: Another idea would be to set k2 above equal to zero
and see how well the poles of Ãcl can be placed by selection of the other k’s. With k2 = 0
the controller from part (b) requires only output feedback.
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