
University of Illinois Fall 2024

ECE 515/ME 540: Problem Set 6: Problems and Solutions
Observability, Duality, and Minimality

Due: Wednesday, October 16, 11:59pm
Reading: Course notes, Chapter 6

1. [Adjoint linear system]
Let ϕ denote the state transition matrix for the LTV system ẋ = A(t)x in Rn and let ϕa

denote the state transition matrix for the associated adjoint system defined by ż = −A∗(t)z
using the same time varying A.)

(a) Find an expression for d
dtϕ(t0, t) by using the fact d

dt {ϕ(t0, t)ϕ(t, t0)} = 0n×n and remov-
ing the common factor ϕ(t, t0).

Solution: By the product rule for differentiation,

0n×n =
d

dt
{ϕ(t0, t)ϕ(t, t0)} =

{
d

dt
ϕ(t0, t)

}
ϕ(t, t0) + ϕ(t0, t)

d

dt
ϕ(t, t0)

=

{
d

dt
ϕ(t0, t)

}
ϕ(t, t0) + ϕ(t0, t)A(t)ϕ(t, t0)

=

{
d

dt
ϕ(t0, t) + ϕ(t0, t)A(t)

}
ϕ(t, t0)

Since the matrix ϕ(t, t0) is nonsingular it follows that
d
dtϕ(t0, t) = −ϕ(t0, t)A(t).

ALTERNATIVE: Another correct solution would be to not use the differential equation
for ϕ. From the first line above we could deduce:

d

dt
ϕ(t0, t) = −ϕ(t0, t)

{
d

dt
ϕ(t, t0)

}
ϕ−1(t, t0).

With this answer to part (a), we can still do part (b). First, if we use d
dtϕ(t, t0) =

A(t)ϕ(t, t0) we get d
dtϕ(t0, t) = −ϕ(t0, t)A(t) and proceed for the rest of part (b) as

below.

(b) Show that ϕa(t, t0) = ϕ∗(t0, t). (Hint: For t0 fixed, ϕ(t, t0) is determined for all t by
d
dtϕ(t, t0) = A(t)ϕ(t, t0) along with ϕ(t0, t0) = I. Similarly, ϕa(t, t0) is determined by
d
dtϕa(t, t0) = −A∗(t)ϕa(t, t0) along with ϕa(t0, t0) = I. )

Solution: By part (a),

d

dt
ϕ∗(t0, t) = −(ϕ(t0, t)A(t))∗ = −A∗(t)ϕ∗(to, t).

and of course ϕ∗(t0, t0) = I. Thus ϕ∗(t0, t) satisfies the differential equation that deter-
mines ϕa(t, t0), so they are equal.

(c) Show that z∗(t)x(t) = z∗(0)x(0) for all t in two different ways: (i) by differentiation and
(ii) using the state transition matrices.

Solution: (i)

d

dt
{z∗(t)x(t)} = (−A∗(t)z(t))∗x(t) + z∗(t)A(t)x(t) = z∗(t)(−A(t) +A(t))x(t) = θ.

(ii) z∗(t)x(t) = (ϕa(t, 0)z(0))
∗ϕ(t, 0)x(0) = z∗(0)ϕ(0, t)ϕ(t, 0)x(0) = z∗(0)x(0).



2. [Classification of first order LTI systems]
Consider the first-order SISO LTI system model

ẋ = ax+ bu

y = cx+ du.

(a) Under what conditions on a, b, c, d is the system controllable?

Solution: Controllable if and only if b ̸= 0 because, for example, the controllability
matrix is the 1× 1 matrix C = [b].

(b) Under what conditions on a, b, c, d is the system observable?

Solution: Observable if and only if c ̸= 0 because, for example, the observability matrix
is the 1× 1 matrix O = [c].

(c) Under what conditions on a, b, c, d is the system internally asymptotically stable (i.e. if
there is zero control the state converges to zero from any initial condition)?

Solution: Asymptotically stable if and only if Re(a) < 0. In other words the A matrix
is Hurwitz. The 1× 1 matrix [a] has a as its only eigenvalue.

(d) Under what condition on a, b, c, d is the system a minimal realization?

Solution: Realization in minimal if and only if b ̸= 0 and c ̸= 0. Same as being both
controllable and observable.

3. [Some realizations that are not minimal]
Consider the transfer function

P (s) =
s+ 2

(s+ 2)(s+ 5)
=

1

s+ 5
.

(a) Obtain the second order state space realization in controllable canonical form (CCF). Is
it controllable? Is it observable?

Solution: Since P (s) = s+2
s2+7s+10

, the CCF is given by

ẋ =

[
0 1

−10 −7

]
x+

[
0
1

]
u

y =
[
2 1

]
x

It is controllable (CCF is always controllable or we see C =

[
0 1
1 −7

]
. is full rank)

The controllability matrix is given by O =

[
2 1

−10 −5

]
. It does not have full rank

so the system is not observable. We could have deduced that from the fact the second
order system is not minimal because P (s) = 1

s+5 which implies there is a first order state
space realization.

(b) Obtain the second order state space realization in observable canonical form (OCF). Is
it controllable? Is it observable?

Solution: The OCF is given by

ẋ =

[
−7 1
−10 0

]
x+

[
1
2

]
u

y =
[
1 0

]
x
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It is observable (OCF is always observable or we see O =

[
1 0
−7 1

]
is full rank).

The controllability matrix is given by O =

[
1 −5
2 −10

]
. It does not have full rank so

the system is not controllable, as we could also deduce from the non-minimality of the
realization.

(c) Obtain the second order state space realization in modal form. Is it controllable? Is it
observable?

Solution: Since P (s) = 1
s+5 + 0

s+2 , the second order modal realization is:

ẋ =

[
−2 0
0 −5

]
x+

[
0
1

]
u

y =
[
1 1

]
x

Checking C =

[
0 0
1 −5

]
and O =

[
1 1
−2 −5

]
shows this realization is not controllable

but it is observable.

4. [Kalman controllability decomposition]
Consider the LTI state space system ẋ = Ax+Bu with

A =

 1 0 0
2 4 2
−2 −3 −1

 B =

 1
1
−2

 .

Find a nonsingular matrix P so that the corresponding change of coordinates brings the
system into the Kalman controllability canonical form as in Chapter 5. This is not the same
as the controllable canonical form (CCF) defined in Chapter 1 and the answer is not unique.
Many authors call this the Kalman controllability decomposition. (Hint: To simplify the
matrix inversion, you can use elementary column operations to come up with a simple basis
for the column span of C rather than using a set of linearly independent columns.)

Solution: The controllability matrix is C =

 1 1 1
1 2 4
−2 −3 −5

 . Using elementary col-

umn operations (start by subtracting the first column from the second and third columns)

we find C has the same column span as C′ =

 1 0 0
0 1 0
−1 −1 0

 . The controllable subspace

is spanned by the columns of C and thus by the columns of C′, and it has dimension two.
To select a choice of P−1 we use the first two columns of C′ and add a third column not in
the span of the first two. (Other choices are possible, such as using the first two columns

of C.) Specifically, we use P−1 =

 1 0 0
0 1 0
−1 −1 1

 which has inverse P =

 1 0 0
0 1 0
1 1 1

 .

We then find

Ā = PAP−1 =

 1 0 0
0 2 2
0 0 1

 B̄ = PB =

 1
1
0
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which is in Kalman controllability canonical form. Specifically the third row first two
entries of Ā and third entry in B̄ are zeros, and the 2 × 2 leading minor of Ā and first

two entries in B̄ correspond to a controllable second order system, i.e. Ac =

[
1 0
0 2

]
.

and Bc =

[
1
1

]
; it happens to be in modal form.

NOTE: If instead we had taken the first two columns of P−1 to be the first two columns
of C and the third to be [0 0 1]T then we would have found the following version of
KCCF:

Ā = PAP−1 =

 0 −2 −2
1 3 2
0 0 1

 B̄ = PB =

 1
0
0


Note that both solutions have the same eigenvalue for the uncontrollable part, namely 1.
And the eigenvalues for the controllable parts are 1 and 2 in both cases. Other choices
of P are possible giving yet other versions of the KCCF but they will all be similar in
the above senses.

5. [Minimal realization of a MIMO transfer function]
Using the matrix partial fraction expansion described at the end of Chapter 6, find a minimal
state-space representation for the 3× 2 transfer function

P (s) =
1

(s+ 2)(s+ 3)(s+ 4)

 2s2 + 13s+ 20 s2 + 7s+ 12
s2 + 5s+ 6 2s2 + 12s+ 18

2s2 + 11s+ 14 s2 + 5s+ 6


Solution: By partial fraction expansion of each of the six entries in P (s) and suitably
arranging, we find

P (s) =
1

s+ 2

 1 1
0 1
0 0

+
1

s+ 3

 1 0
0 0
1 0

+
1

s+ 4

 0 0
1 1
1 1


=

1

s+ 2
R1 +

1

s+ 3
R2 +

1

s+ 4
R3

The sum of the ranks of R1, R2, R3 is 2 + 1 + 1 =4. So any realization of P (s) with a
four dimensional state space is minimal. For example, taking

R1 =

 1 1
0 1
0 0

[
1 0
0 1

]
= C1B1

R2 =

 1
0
1

 [
1 0

]
= C2B2

R3 =

 0
1
1

 [
1 1

]
= C3B3,
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we can write

P (s) = [C1|C2|C3]

 1
s+2 0 0

0 1
s+3 0

0 0 1
s+4

 B1

B2

B3



=

 1 1 1 0
0 1 0 1
0 0 1 1




1
s+2 0 0 0

0 1
s+2 0 0

0 0 1
s+3 0

0 0 0 1
s+4




1 0
0 1
1 0
1 1


= C(sI −A)−1B.

where

C =

 1 1 1 0
0 1 0 1
0 0 1 1

 A =


−2 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4

 B =


1 0
0 1
1 0
1 1
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