
University of Illinois Fall 2024

ECE 515/ME 540: Problem Set 5: Problems and Solutions
Controllability

Due: Wednesday, October 9, 11:59pm
Reading: Course notes, Chapter 5

1. [Controllability properties for some LTI systems]
For each of the A,B pairs below determine whether the LTI system ẋ = Ax+Bu is control-
lable. For the ones that are not controllable, find the controllable subspace Σc and also find
an eigenvalue λ of A such that the Hautus-Rosenbrock test for controllability fails.

(a)

A =

 5 1 0
0 5 0
0 0 2

 B =

 1
1
1


Solution:

C =

 1 6 35
1 5 25
1 2 4


Controllable. (To see C is full rank we could subtract first row from each of the other
two rows and then do one more elementary row operation.) BTW, A consists of two
Jordan blocks with different eigenvalues.

(b)

A =

 5 1 0
0 5 1
0 0 5

 B =

 1
1
1


Solution:

C =

 1 6 36
1 6 35
1 5 25


Controllable. (To see C is full rank we could subtract first row from each of the other
two rows and see it is full rank.) BTW, A consists of a single Jordan block.

(c)

A =

 5 1 0
0 5 0
0 0 5

 B =

 1
1
1





Solution:

C =

 1 6 35
1 5 25
1 5 25


Not controllable. C has rank 2 – the row span has dimension two. Columns 1,2 span.
Σs = {x ∈ R3 : x2 = x3}. The Hautus-Rosenbrock test fails for λ = 5 because

[(5I −A) B] =

 0 −1 0 1
0 0 0 1
0 0 0 1


which does not have full rank. BTW, A consists of two Jordan blocks with the same
eigenvalue. There does not exist a choice of column vector B that could make the system
controllable by the Hautus-Rosenbrock test.

(d)

A =


0 0 1 1
0 0 1 1
0 0 1 1
0 0 0 2

 B =


4 0
2 0
0 1
0 1


Solution:

C =


4 0 0 2 0 4 0 8
2 0 0 2 0 4 0 8
0 1 0 2 0 4 0 8
0 1 0 2 0 4 0 8


Not controllable; the row span has dimension three. Columns 1,2,4 span. Σs = {x ∈
R4 : x3 = x4}. Since A is upper triangular the eigenvalues are the diagonal entries. The
Hautus-Rosenbrock test fails for λ = 1 because

[(I −A) B] =


1 0 −1 −1 4 0
0 1 −1 −1 2 0
0 0 0 −1 0 1
0 0 0 −1 0 1


which is singular (third and fourth rows are the same).

2. [Controllability for a linear system that is piecewise time invariant]
Consider the time-varying system ẋ = A(t)x+Bu over the time interval 0 ≤ t ≤ 2, where

(A(t), B(t)) =

{
(A1, B1) if 0 ≤ t < 1
(A2, B2) if 1 ≤ t ≤ 2

(1)

and (A1, B1) and (A2, B2) are the matrices for two LTI systems with the same dimensions.
We consider controllability of the time-varying system for the two fixed times t0 = 0 and
tf = 2. That is, taking any state xo at time t = 0 to any state xf at time t = 2.
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(a) Find ϕ(0, τ) for 0 ≤ τ ≤ 2. (Hint: This is the state transition matrix for going backwards
in time from τ to 0.)

Solution:

ϕ(0, τ) =

{
e−A1τ if 0 ≤ τ < 1

ϕ(0, 1)ϕ(1, τ) = e−A1e−A2(τ−1) if 1 ≤ τ ≤ 2

Note that since we do not assume that A1A2 = A2A1 it would be incorrect to write
ϕ(0, τ) = e−(A1+A2(τ−1)) for 1 ≤ τ ≤ 2.

(b) Express the controllability Grammian matrix W (0, 2) in terms of the controllability
Grammian matrices W1(0, 1) and W2(0, 1) for the two subsystems corresponding to
(A1, B1) and (A2, B2).

Solution:

W (0, 2) :=

∫ 2

0
ϕ(0, τ)B(τ)B∗(τ)ϕ∗(0, , τ)dτ

=

∫ 1

0
eA1τB1B

∗
1e

A∗
1τdτ +

∫ 2

1
e−A1e−A2(τ−1)B2B

∗
2e

−A∗
2(τ−1)e−A∗

1dτ

= W1(0, 1) + e−A1

(∫ 1

0
e−A2τB2B

∗
2e

−A∗
2τdτ

)
e−A∗

1

= W1(0, 1) + e−A1W2(0, 1)e
−A∗

1

(c) Is it true or false that (A(t), B(t))0≤t≤2 is controllable if either (A1, B1) or (A2, B2)
is controllable? Justify your answer. (Hint: Controllability Grammians are always
Hermitian positive semi-definite matrices.)

Solution: True. For any nonzero vector α,

α∗W (0, 2)α = α∗W1(0, 1)α+ α∗e−A1W2(0, 1)e
−A∗

1α (2)

and both terms on the righthand side of (2) are nonnegative. If (A1, B1) is controllable
then the first term is strictly positive and if (A2, B2) is controllable then the second
term is strictly positive, using the fact e−A1 is nonsingular. So if at least one of the two
subsystems is controllable then so is the composite system.

(d) Is it true or false that (A(t), B(t))0≤t≤2 is controllable only if either (A1, B1) or (A2, B2)
is controllable? Justify your answer.

Solution: False. For example, let

A1 =

[
−1 0
0 0

]
B1 =

[
1
0

]
A2 =

[
0 0
0 −1

]
B1 =

[
0
1

]
Intuitively, x1 can be controlled during [0, 1] and x2 can be controlled over [1, 2]. For
this choice

W1(0, 1) =

[
e2−1
2 0
0 0

]
W2(0, 1) =

[
0 0

0 e2−1
2

]
W (0, 2) =

[
e2−1
2 0

0 e2−1
2

]
.

3. [Generalized matrix inverse]
Suppose A ∈ Mn,m(C) (i.e. A is an n×m matrix with complex entries) and b is an n vector.
Suppose n < m and consider solutions u to the linear system of equations Au = b.

3



(a) Show that there is a solution for all b ∈ Cn if and only if A has full rank (i.e. rank n).

Solution: There are solutions for all b if and only if the column span of A is equal to Cn,
or equivalently, if and only if the dimension of the column span of A is n, or equivalently,
if and only if A has rank n.

(b) Show that A has full rank if and only if the Grammian matrix AA∗ has full rank.

Solution: If A does not have full rank then its rows are not linearly independent so there
exists a nonzero vector α ∈ Cn such that α∗A = ϑm×1. That implies that α∗(AA∗) =
ϑ1×n so AA∗ is not full rank. Conversely, if AA∗ is not full rank then there exists
a nonzero vector α such that α∗(AA∗) = ϑn×1. But then ∥α∗A∥2 = α∗AA∗α = 0 so
α∗A = ϑ1×m so A does not have full rank.

(c) Suppose A has full rank. Then a solution of the linear equation Au = b is given by
u = A∗(AA∗)−1b. Let ũ denote another solution, so Aũ = b. Show that
∥ũ∥2 = ∥ũ− u∥2 + ∥u∥2. Therefore, u = A∗(AA∗)−1b is the solution to Au = b with the
minimum norm. (Hint: A(ũ− u) = b− b = ϑn×1.) The matrix A∗(AA∗)−1 is called the
generalized inverse of A.)

Solution: We have ũ = (ũ− u) + u and ⟨u, ũ− u⟩ = u∗(ũ− u) = b∗(AA∗)−1A(ũ− u) =
b∗(AA∗)−1ϑ = 0. In other words, ũ is the sum of the orthogonal vectors ũ − u and u.
Therefore, ∥ũ∥2 = ∥ũ− u∥2 + ∥u∥2 as claimed.

4. [Controllable canonical form]
Suppose (A,B) is a controllable pair such that B is an n× 1 matrix (so single input system)
and let C denote its controllability matrix. Write the characteristic polynomial of A as
△(s) := det(sI −A) = sn+α1s

n−1+ · · ·+αn. The controllable canonical form (CCF) for the
characteristic polynomial △(s) is the pair (Ā, B̄) given by

Ā =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
−αn −αn−1 · · · −α2 −α1

 , B̄ =


0
0
...
0
1

 .

(The α’s here are indexed as in Chapter 7 of the class notes – not the same as in Chapter 1.)

(a) Show that the controllability matrix C̄ for (Ā, B̄) is full rank – this shows that the CCF
is indeed controllable. Also, explain why Ā also has characteristic polynomial △(s).

Solution: By induction on k, reading down the entries of the kth column of C̄ we find
n− k 0’s followed by a 1 followed by other more complicated terms. So we have that C̄
has the form:

C̄ =
[
B̄ ĀB̄ Ā2B̄ · · · Ān−1B̄

]
=


0 0 · · · 0 1
0 0 · · · 1 ∗
...

...
...

...
...

0 1 · · · ∗ ∗
1 ∗ · · · ∗ ∗


where the * terms depend on the α’s. The matrix is nonsingular (because the columns
are clearly linearly independent or because det(C) = (−1)n ̸= 0).
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The characteristic polynomial of Ā is given by

det(sI − Ā) = det


s −1 0 · · · 0
0 s −1 · · · 0
...

...
. . .

. . .
...

0 0 · · · s −1
αn αn−1 · · · · · · s+ α1

 .

We will prove that det(sI− Ā) = sn+α1s
n−1+ · · ·+αn by induction on n. The result is

true for the base case n = 1: in that case both are equal to s+α1. Suppose the equality
is true for all order n− 1 CCF systems for all choices of the coefficients. Given an order
n system, we evaluate the determinant by expansion by minors down the first column.
Let M = sI − Ā and let M i,j denote the (i, j)th minor of M , obtained by deleting the
ith row and jth column. Then the determinant is

∑n
i=1(−1)i+1mi,1 det(M

i,1). There
are two nonzero terms in the sum. Since M1,1 is also a matrix in the CCF form and
Mn,1 = −I(n−1)×(n−1), we get by the induction hypothesis that

det(sI − Ā) = s det(M1,1) + (−1)n+1αn det(M
n,1)

= s

(
sn−1 + α1s

n−2 + · · ·+ αn−2s+ αn−1

)
+ (−1)n+1αn(−1)n−1

= sn + α1s
n−1 + · · ·+ αn

as claimed.

ALTERNATIVE DERIVATION: To evaluate the determinant we use the formula involv-
ing a sum over permutations (see Problem set 2, Problem 3(d)). The identity permuta-
tion gives the terms sn+α1s

n−1. A little thought shows that for each k with 1 ≤ k ≤ n−1
there is only one permutation that gives a nonzero term in the sum that includes αn−k.
That term is given by

det



s 0 0 · · · 0 0 0 · · · 0 0 0
0 s 0 · · · 0 0 0 · · · 0 0 0
...

...
. . .

. . .
...

...
...

...
...

...
...

0 0 · · · s 0 0 0 · · · 0 0 0
0 0 · · · 0 0 −1 0 · · · 0 0 0
0 0 · · · 0 0 0 −1 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 · · · 0 0 · · · 0 0 −1 0 0
0 0 · · · 0 0 · · · 0 0 0 −1 0
0 0 · · · 0 αn−k · · · 0 0 0 0 0


︸ ︷︷ ︸

k

Starting from the matrix shown we can repeatedly swap the column containing αn−k

with the column to its right while changing the -1 in the column moving left to +1. Such
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swaps don’t change the determinant and result in the determinant:

det



s 0 · · · 0 0 0 0 · · · 0 0
0 s · · · 0 0 0 0 · · · 0 0
...

...
. . .

. . .
...

...
...

...
...

...
0 0 · · · s 0 0 0 · · · 0 0
0 0 · · · 0 1 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 · · · 0 0 · · · 0 1 0 0
0 0 · · · 0 0 · · · 0 0 1 0
0 0 · · · 0 0 · · · 0 0 0 αn−k


= αn−ks

k

︸ ︷︷ ︸
k

Hence det(sI − Ā) = △(s) as claimed.

(b) Show that AC = CĀT and C−1B = e1, where e1 =


1
0
...
0

 .

Solution: We find that

C =
[
B AB · · · An−2B An−1B

]
AC =

[
AB A2B · · · An−1B AnB

]

ĀT =


0 0 0 · · · −αn

1 0 0 · · · −αn−1

0 1 0
. . .

...

0 0
. . . 0 −α2

0 0 · · · 1 −α1


and by the Cayley-Hamilton theorem, An = −α1A

n−1 + · · · −αn−1A−αnI, from which
the equation AC = CĀT follows.

It is easily checked that Ce1 = B from which it follows that C−1B = e1.

(c) Explain how to use part (b) to quickly show: ĀC̄ = C̄ĀT and C̄−1B̄ = e1.

Solution: Replace (A,B) by (Ā, B̄) in the equations of part (b). Since A and Ā have
the same characteristic polynomial △(s), the equations hold as before.

(d) If (Ā, B̄) were equivalent to (A,B) under the change of coordinates x̄ = Px, then it must
be that C̄ = PC or P = C̄C−1. Show that for this P that Ā = PAP−1 and B̄ = PB.
This proves that the original controllable pair (A,B) is equivalent to (Ā, B̄) under the
change of coordinates.

Solution: Since P−1 = CC̄−1, the inequalties to be shown are:

Ā = C̄C−1ACC̄−1 and B̄ = C̄ C−1B︸ ︷︷ ︸
e1

.
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or equivalently:

C̄−1 ĀC̄︸︷︷︸
C̄ĀT

= C−1 AC︸︷︷︸
CĀT

and B̄ = C̄e1

or equivalently (keeping in mind what B̄ and C̄ are):

ĀT = ĀT and B̄ = B̄,

which is true.
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