ECE 515/ME 540: Problem Set 5: Problems and Solutions Controllability

Due: Wednesday, October 9, 11:59pm Reading: Course notes, Chapter 5

1. [Controllability properties for some LTI systems]

For each of the A, B pairs below determine whether the LTI system $\dot{x} = Ax + Bu$ is controllable. For the ones that are not controllable, find the controllable subspace Σ_c and also find an eigenvalue λ of A such that the Hautus-Rosenbrock test for controllability fails.

(a)

$$
A = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$

Solution:

$$
\mathcal{C} = \left[\begin{array}{rrr} 1 & 6 & 35 \\ 1 & 5 & 25 \\ 1 & 2 & 4 \end{array} \right]
$$

Controllable. (To see $\mathcal C$ is full rank we could subtract first row from each of the other two rows and then do one more elementary row operation.) BTW, A consists of two Jordan blocks with different eigenvalues.

(b)

$$
A = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$

Solution:

Controllable. (To see $\mathcal C$ is full rank we could subtract first row from each of the other two rows and see it is full rank.) BTW, A consists of a single Jordan block.

(c)

$$
A = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$

Solution:

$$
\mathcal{C} = \left[\begin{array}{rrr} 1 & 6 & 35 \\ 1 & 5 & 25 \\ 1 & 5 & 25 \end{array} \right]
$$

Not controllable. C has rank 2 – the row span has dimension two. Columns 1,2 span. $\Sigma_s = \{x \in \mathbb{R}^3 : x_2 = x_3\}.$ The Hautus-Rosenbrock test fails for $\lambda = 5$ because

$$
[(5I - A) \quad B] = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

which does not have full rank. BTW, A consists of two Jordan blocks with the same eigenvalue. There does not exist a choice of column vector B that could make the system controllable by the Hautus-Rosenbrock test.

(d)

$$
A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 0 \\ 2 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}
$$

Solution:

$$
\mathcal{C} = \left[\begin{array}{cccccc} 4 & 0 & 0 & 2 & 0 & 4 & 0 & 8 \\ 2 & 0 & 0 & 2 & 0 & 4 & 0 & 8 \\ 0 & 1 & 0 & 2 & 0 & 4 & 0 & 8 \\ 0 & 1 & 0 & 2 & 0 & 4 & 0 & 8 \end{array} \right]
$$

Not controllable; the row span has dimension three. Columns 1,2,4 span. $\Sigma_s = \{x \in$ \mathbb{R}^4 : $x_3 = x_4$. Since A is upper triangular the eigenvalues are the diagonal entries. The Hautus-Rosenbrock test fails for $\lambda = 1$ because

$$
[(I-A) \quad B] = \left[\begin{array}{rrrrr} 1 & 0 & -1 & -1 & 4 & 0 \\ 0 & 1 & -1 & -1 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{array} \right]
$$

which is singular (third and fourth rows are the same).

2. [Controllability for a linear system that is piecewise time invariant]

Consider the time-varying system $\dot{x} = A(t)x + Bu$ over the time interval $0 \le t \le 2$, where

$$
(A(t), B(t)) = \begin{cases} (A_1, B_1) & \text{if } 0 \le t < 1\\ (A_2, B_2) & \text{if } 1 \le t \le 2 \end{cases}
$$
 (1)

and (A_1, B_1) and (A_2, B_2) are the matrices for two LTI systems with the same dimensions. We consider controllability of the time-varying system for the two fixed times $t_0 = 0$ and $t_f = 2$. That is, taking any state x_o at time $t = 0$ to any state x_f at time $t = 2$.

(a) Find $\phi(0, \tau)$ for $0 \le \tau \le 2$. (Hint: This is the state transition matrix for going backwards in time from τ to 0.) Solution:

$$
\phi(0,\tau) = \begin{cases}\n e^{-A_1 \tau} & \text{if } 0 \le \tau < 1 \\
\phi(0,1)\phi(1,\tau) = e^{-A_1}e^{-A_2(\tau-1)} & \text{if } 1 \le \tau \le 2\n\end{cases}
$$

Note that since we do not assume that $A_1A_2 = A_2A_1$ it would be incorrect to write $\phi(0,\tau) = e^{-(A_1 + A_2(\tau - 1))}$ for $1 \leq \tau \leq 2$.

(b) Express the controllability Grammian matrix $W(0, 2)$ in terms of the controllability Grammian matrices $W_1(0,1)$ and $W_2(0,1)$ for the two subsystems corresponding to (A_1, B_1) and (A_2, B_2) .

Solution:

$$
W(0,2) := \int_0^2 \phi(0,\tau)B(\tau)B^*(\tau)\phi^*(0, \tau)d\tau
$$

=
$$
\int_0^1 e^{A_1\tau}B_1B_1^*e^{A_1^*\tau}d\tau + \int_1^2 e^{-A_1}e^{-A_2(\tau-1)}B_2B_2^*e^{-A_2^*(\tau-1)}e^{-A_1^*}d\tau
$$

=
$$
W_1(0,1) + e^{-A_1}\left(\int_0^1 e^{-A_2\tau}B_2B_2^*e^{-A_2^*\tau}d\tau\right)e^{-A_1^*}
$$

=
$$
W_1(0,1) + e^{-A_1}W_2(0,1)e^{-A_1^*}
$$

(c) Is it true or false that $(A(t), B(t))_{0 \le t \le 2}$ is controllable if either (A_1, B_1) or (A_2, B_2) is controllable? Justify your answer. (Hint: Controllability Grammians are always Hermitian positive semi-definite matrices.)

Solution: True. For any nonzero vector α ,

$$
\alpha^* W(0,2)\alpha = \alpha^* W_1(0,1)\alpha + \alpha^* e^{-A_1} W_2(0,1) e^{-A_1^*} \alpha \tag{2}
$$

and both terms on the righthand side of (2) are nonnegative. If (A_1, B_1) is controllable then the first term is strictly positive and if (A_2, B_2) is controllable then the second term is strictly positive, using the fact e^{-A_1} is nonsingular. So if at least one of the two subsystems is controllable then so is the composite system.

(d) Is it true or false that $(A(t), B(t))_{0 \le t \le 2}$ is controllable *only* if either (A_1, B_1) or (A_2, B_2) is controllable? Justify your answer.

Solution: False. For example, let

$$
A_1 = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \quad B_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad A_2 = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \quad B_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

Intuitively, x_1 can be controlled during [0, 1] and x_2 can be controlled over [1, 2]. For this choice

$$
W_1(0,1) = \begin{bmatrix} \frac{e^2-1}{2} & 0\\ 0 & 0 \end{bmatrix} \quad W_2(0,1) = \begin{bmatrix} 0 & 0\\ 0 & \frac{e^2-1}{2} \end{bmatrix} \quad W(0,2) = \begin{bmatrix} \frac{e^2-1}{2} & 0\\ 0 & \frac{e^2-1}{2} \end{bmatrix}.
$$

3. [Generalized matrix inverse]

Suppose $A \in \mathcal{M}_{n,m}(\mathbb{C})$ (i.e. A is an $n \times m$ matrix with complex entries) and b is an n vector. Suppose $n < m$ and consider solutions u to the linear system of equations $Au = b$.

- (a) Show that there is a solution for all $b \in \mathbb{C}^n$ if and only if A has full rank (i.e. rank n). **Solution:** There are solutions for all b if and only if the column span of A is equal to \mathbb{C}^n , or equivalently, if and only if the dimension of the column span of A is n , or equivalently, if and only if A has rank n .
- (b) Show that A has full rank if and only if the Grammian matrix AA^* has full rank.

Solution: If A does not have full rank then its rows are not linearly independent so there exists a nonzero vector $\alpha \in \mathbb{C}^n$ such that $\alpha^* A = \vartheta_{m \times 1}$. That implies that $\alpha^* (AA^*) =$ $\vartheta_{1\times n}$ so AA^* is not full rank. Conversely, if AA^* is not full rank then there exists a nonzero vector α such that $\alpha^*(AA^*) = \vartheta_{n \times 1}$. But then $\|\alpha^*A\|^2 = \alpha^*AA^*\alpha = 0$ so $\alpha^* A = \vartheta_{1 \times m}$ so A does not have full rank.

(c) Suppose A has full rank. Then a solution of the linear equation $Au = b$ is given by $u = A^*(AA^*)^{-1}b$. Let \tilde{u} denote another solution, so $A\tilde{u} = b$. Show that $\|\tilde{u}\|^2 = \|\tilde{u} - u\|^2 + \|u\|^2$. Therefore, $u = A^*(AA^*)^{-1}b$ is the solution to $Au = b$ with the minimum norm. (Hint: $A(\tilde{u} - u) = b - b = \vartheta_{n \times 1}$.) The matrix $A^*(AA^*)^{-1}$ is called the generalized inverse of A.)

Solution: We have $\tilde{u} = (\tilde{u} - u) + u$ and $\langle u, \tilde{u} - u \rangle = u^*(\tilde{u} - u) = b^*(AA^*)^{-1}A(\tilde{u} - u) =$ $b^{*}(AA^{*})^{-1}\vartheta = 0.$ In other words, \tilde{u} is the sum of the orthogonal vectors $\tilde{u} - u$ and u. Therefore, $\|\tilde{u}\|^2 = \|\tilde{u} - u\|^2 + \|u\|^2$ as claimed.

4. [Controllable canonical form]

Suppose (A, B) is a controllable pair such that B is an $n \times 1$ matrix (so single input system) and let $\mathcal C$ denote its controllability matrix. Write the characteristic polynomial of A as $\triangle(s) := \det(sI - A) = s^n + \alpha_1 s^{n-1} + \cdots + \alpha_n$. The controllable canonical form (CCF) for the characteristic polynomial $\Delta(s)$ is the pair (\bar{A}, \bar{B}) given by

(The α 's here are indexed as in Chapter 7 of the class notes – not the same as in Chapter 1.)

(a) Show that the controllability matrix \overline{C} for $(\overline{A}, \overline{B})$ is full rank – this shows that the CCF is indeed controllable. Also, explain why \overline{A} also has characteristic polynomial $\Delta(s)$. **Solution:** By induction on k, reading down the entries of the k^{th} column of \overline{C} we find $n - k$ 0's followed by a 1 followed by other more complicated terms. So we have that \overline{C} has the form:

$$
\bar{\mathcal{C}} = \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \bar{A}^2\bar{B} & \cdots & \bar{A}^{n-1}\bar{B} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & \cdots & * & * \\ 1 & * & \cdots & * & * \end{bmatrix}
$$

where the $*$ terms depend on the α 's. The matrix is nonsingular (because the columns are clearly linearly independent or because $\det(C) = (-1)^n \neq 0$.

The characteristic polynomial of \overline{A} is given by

$$
\det(sI - \bar{A}) = \det \begin{bmatrix} s & -1 & 0 & \cdots & 0 \\ 0 & s & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & s & -1 \\ \alpha_n & \alpha_{n-1} & \cdots & \cdots & s + \alpha_1 \end{bmatrix}.
$$

We will prove that $\det(sI - \overline{A}) = s^n + \alpha_1 s^{n-1} + \cdots + \alpha_n$ by induction on *n*. The result is true for the base case $n = 1$: in that case both are equal to $s + \alpha_1$. Suppose the equality is true for all order $n - 1$ CCF systems for all choices of the coefficients. Given an order n system, we evaluate the determinant by expansion by minors down the first column. Let $M = sI - \overline{A}$ and let $M^{i,j}$ denote the $(i, j)^{th}$ minor of M, obtained by deleting the i^{th} row and j^{th} column. Then the determinant is $\sum_{i=1}^{n}(-1)^{i+1}m_{i,1} \det(M^{i,1})$. There are two nonzero terms in the sum. Since $M^{1,1}$ is also a matrix in the CCF form and $M^{n,1} = -I_{(n-1)\times(n-1)}$, we get by the induction hypothesis that

$$
\begin{aligned} \det(sI - \bar{A}) &= s \det(M^{1,1}) + (-1)^{n+1} \alpha_n \det(M^{n,1}) \\ &= s \left(s^{n-1} + \alpha_1 s^{n-2} + \dots + \alpha_{n-2} s + \alpha_{n-1} \right) + (-1)^{n+1} \alpha_n (-1)^{n-1} \\ &= s^n + \alpha_1 s^{n-1} + \dots + \alpha_n \end{aligned}
$$

as claimed.

ALTERNATIVE DERIVATION: To evaluate the determinant we use the formula involving a sum over permutations (see Problem set 2, Problem 3(d)). The identity permutation gives the terms $s^n + \alpha_1 s^{n-1}$. A little thought shows that for each k with $1 \leq k \leq n-1$ there is only one permutation that gives a nonzero term in the sum that includes α_{n-k} . That term is given by

	\boldsymbol{s}											
det	θ	\boldsymbol{S}				θ	0	$\ddot{}$	0	0	0	
	θ	Ω		$\mathcal{S}_{\mathcal{S}}$	0	θ	0		0	0	0	
	$\overline{0}$	θ		0	$\boldsymbol{0}$	$^{-1}$	0		0	$\boldsymbol{0}$	$\boldsymbol{0}$	
	θ	0	\bullet	0	$\boldsymbol{0}$	$\boldsymbol{0}$	$^{-1}$		Ω	$\boldsymbol{0}$	$\overline{0}$	
	0	0		0	0		0	0	$^{-1}$	0	0	
	$\overline{0}$	θ		0	0		0	0	$\boldsymbol{0}$	$^{-1}$	0	
	θ	0	.	0	α_{n-k}	$\ddot{}$	0	0	$\boldsymbol{0}$	$\boldsymbol{0}$	0	
			\boldsymbol{k}									

Starting from the matrix shown we can repeatedly swap the column containing α_{n-k} with the column to its right while changing the -1 in the column moving left to $+1$. Such

swaps don't change the determinant and result in the determinant:

Hence $\det(sI - \bar{A}) = \triangle(s)$ as claimed.

(b) Show that
$$
AC = CA^T
$$
 and $C^{-1}B = e^1$, where $e^1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$.

Solution: We find that

$$
\mathcal{C} = \begin{bmatrix} B & AB & \cdots & A^{n-2}B & A^{n-1}B \end{bmatrix}
$$

$$
AC = \begin{bmatrix} AB & A^2B & \cdots & A^{n-1}B & A^nB \end{bmatrix}
$$

$$
\bar{A}^T = \begin{bmatrix} 0 & 0 & 0 & \cdots & -\alpha_n \\ 1 & 0 & 0 & \cdots & -\alpha_{n-1} \\ 0 & 1 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & -\alpha_2 \\ 0 & 0 & \cdots & 1 & -\alpha_1 \end{bmatrix}
$$

and by the Cayley-Hamilton theorem, $A^n = -\alpha_1 A^{n-1} + \cdots - \alpha_{n-1} A - \alpha_n I$, from which the equation $AC = C\overline{A}^T$ follows.

It is easily checked that $Ce^1 = B$ from which it follows that $C^{-1}B = e^1$.

- (c) Explain how to use part (b) to quickly show: $\overline{A}\overline{C} = \overline{C}\overline{A}^T$ and $\overline{C}^{-1}\overline{B} = e^1$. **Solution:** Replace (A, B) by $(\overline{A}, \overline{B})$ in the equations of part (b). Since A and \overline{A} have the same characteristic polynomial $\Delta(s)$, the equations hold as before.
- (d) If $(\overline{A}, \overline{B})$ were equivalent to (A, B) under the change of coordinates $\overline{x} = Px$, then it must be that $\bar{\mathcal{C}} = P\mathcal{C}$ or $P = \bar{\mathcal{C}}\mathcal{C}^{-1}$. Show that for this P that $\bar{A} = PAP^{-1}$ and $\bar{B} = PB$. This proves that the original controllable pair (A, B) is equivalent to $(\overline{A}, \overline{B})$ under the change of coordinates.

Solution: Since $P^{-1} = \mathcal{C}\overline{\mathcal{C}}^{-1}$, the inequalties to be shown are:

$$
\bar{A} = \bar{C}C^{-1}AC\bar{C}^{-1} \quad \text{and} \quad \bar{B} = \bar{C}\underbrace{C^{-1}B}_{e^1}.
$$

or equivalently:

$$
\bar{\mathcal{C}}^{-1} \underbrace{\bar{A}\bar{\mathcal{C}}}_{\bar{\mathcal{C}}\bar{A}^T} = \mathcal{C}^{-1} \underbrace{\mathcal{AC}}_{\mathcal{C}\bar{A}^T} \quad \text{and} \quad \bar{B} = \bar{\mathcal{C}}e^1
$$

or equivalently (keeping in mind what \bar{B} and \bar{C} are):

$$
\bar{A}^T = \bar{A}^T \quad \text{and} \quad \bar{B} = \bar{B},
$$

which is true.