ECE 515/ME 540: Problem Set 5 Controllability

Due:Wednesday, October 9, 11:59pmReading:Course notes, Chapter 5

1. [Controllability properties for some LTI systems]

For each of the A, B pairs below determine whether the LTI system $\dot{x} = Ax + Bu$ is controllable. For the ones that are not controllable, find the controllable subspace Σ_c and also find an eigenvalue λ of A such that the Hautus-Rosenbrock test for controllability fails.

(a)

$$A = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(b)

$$A = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(c)

$$A = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(d)

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 0 \\ 2 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

2. [Controllability for a linear system that is piecewise time invariant] Consider the time-varying system $\dot{x} = A(t)x + Bu$ over the time interval $0 \le t \le 2$, where

$$(A(t), B(t)) = \begin{cases} (A_1, B_1) & \text{if } 0 \le t < 1\\ (A_2, B_2) & \text{if } 1 \le t \le 2 \end{cases}$$
(1)

and (A_1, B_1) and (A_2, B_2) are the matrices for two LTI systems with the same dimensions. We consider controllability of the time-varying system for the two fixed times $t_0 = 0$ and $t_f = 2$. That is, taking any state x_o at time t = 0 to any state x_f at time t = 2.

(a) Find $\phi(0, \tau)$ for $0 \le \tau \le 2$. (Hint: This is the state transition matrix for going backwards in time from τ to 0.)

- (b) Express the controllability Grammian matrix W(0,2) in terms of the controllability Grammian matrices $W_1(0,1)$ and $W_2(0,1)$ for the two subsystems corresponding to (A_1, B_1) and (A_2, B_2) .
- (c) Is it true or false that $(A(t), B(t))_{0 \le t \le 2}$ is controllable if either (A_1, B_1) or (A_2, B_2) is controllable? Justify your answer. (Hint: Controllability Grammians are always Hermitian positive semi-definite matrices.)
- (d) Is it true or false that $(A(t), B(t))_{0 \le t \le 2}$ is controllable only if either (A_1, B_1) or (A_2, B_2) is controllable? Justify your answer.

3. [Generalized matrix inverse]

Suppose $A \in \mathcal{M}_{n,m}(\mathbb{C})$ (i.e. A is an $n \times m$ matrix with complex entries) and b is an n vector. Suppose n < m and consider solutions u to the linear system of equations Au = b.

- (a) Show that there is a solution for all $b \in \mathbb{C}^n$ if and only if A has full rank (i.e. rank n).
- (b) Show that A has full rank if and only if the Grammian matrix AA^* has full rank.
- (c) Suppose A has full rank. Then a solution of the linear equation Au = b is given by $u = A^*(AA^*)^{-1}b$. Let \tilde{u} denote another solution, so $A\tilde{u} = b$. Show that $\|\tilde{u}\|^2 = \|\tilde{u} u\|^2 + \|u\|^2$. Therefore, $u = A^*(AA^*)^{-1}b$ is the solution to Au = b with the minimum norm. (Hint: $A(\tilde{u} u) = b b = \vartheta_{n \times 1}$.) The matrix $A^*(AA^*)^{-1}$ is called the generalized inverse of A.)

4. [Controllable canonical form]

Suppose (A, B) is a controllable pair such that B is an $n \times 1$ matrix (so single input system) and let \mathcal{C} denote its controllability matrix. Write the characteristic polynomial of A as $\Delta(s) := \det(sI - A) = s^n + \alpha_1 s^{n-1} + \cdots + \alpha_n$. The controllable canonical form (CCF) for the characteristic polynomial $\Delta(s)$ is the pair $(\overline{A}, \overline{B})$ given by

		1	0		0]			
$\bar{A} =$	0	0	1 •.	· · ·	0		$\bar{B} =$	0	.
	0	0		0	1	,		0	
	$-\alpha_n$	$-\alpha_{n-1}$	• • •	$-\alpha_2$	$-\alpha_1$			1	

(The α 's here are indexed as in Chapter 7 of the class notes – not the same as in Chapter 1.)

- (a) Show that the controllability matrix \overline{C} for $(\overline{A}, \overline{B})$ is full rank this shows that the CCF is indeed controllable. Also, explain why \overline{A} also has characteristic polynomial $\Delta(s)$.
- (b) Show that $AC = C\bar{A}^T$ and $C^{-1}B = e^1$, where $e^1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$.
- (c) Explain how to use part (b) to quickly show: $\bar{A}\bar{C} = \bar{C}\bar{A}^T$ and $\bar{C}^{-1}\bar{B} = e^1$.
- (d) If (\bar{A}, \bar{B}) were equivalent to (A, B) under the change of coordinates $\bar{x} = Px$, then it must be that $\bar{C} = PC$ or $P = \bar{C}C^{-1}$. Show that for this P that $\bar{A} = PAP^{-1}$ and $\bar{B} = PB$. This proves that the original controllable pair (A, B) is equivalent to (\bar{A}, \bar{B}) under the change of coordinates.