
University of Illinois Fall 2024

ECE 515/ME 540: Problem Set 4: Problems and Solutions
Stability

Due: Wednesday, September 25, 11:59pm
Reading: Course notes, Chapter 4

1. [Stability of systems]
Determine the equilibrium points of the following three dynamical systems and for each
equilibrium point, determine in which of the following three senses the equilibrium point is
stable: LS - Lyapunov stability, AS - asymptotic stability, GAS – global asymptotic stability.
Refer directly to the definitions of stability without using tools such as eigenvector analysis or
Lyapunov functions. The systems evolve in real Euclidean spaces R2,R2, and R, respectively.

(a)
ẋ1 = −x1
ẋ2 = −x2(1− x21)

(b)
ẋ1 = 0
ẋ2 = −x21

(c) ẋ = x(x− 1)(x− 2)

Solution: (a) Setting ẋ1 = ẋ2 = 0 to identify the equilibrium points we find that xe = ϑ
(the origin) is the only equilibrium point. The evolution of x1 does not depend on x2
and its vector field takes it monotonically to zero. After the first time that |x1| < r for
some constant r with 0 < r < 1 then x2 converges monotonically to 0 as well. So xe is
GAS (globally asymptotically stable, and hence also LS and AS.

Solution: (b) Any x such that x1 = 0 is an equilibrium point. Inside a small disk
centered around any equilibrium point, there is a possible initial state x with x1 = c for
some small, nonzero constant c. Then x1(t) = c for all t and ẋ2 = −c2 for all t. Hence
x2(t) → −∞ as t → ∞. Therefore, none of the equilibria are stable in any of the three
senses.

Solution: (c) The points x = 0, 1, 2 are the equilibrium points. Note that ẋ > 0 for
0 < x < 1 or x > 2 and ẋ < 0 for x < 0 and 1 < x < 1. This can be represented by the
following one dimensional vector field (aka phase diagram):

· · · ←←←← 0→→→→ 1←←←← 2→→→→ · · · .
From this we see that equilibrium points 0 and 2 are unstable in all three senses, and
equilibrium point 1 is locally asymptotically stable (and hence also Lyapunov stable)
but not globally asymptotically stable.

Note: The interval (0, 2) is the maximal region of asymptotic stability for x = 1.

2. [A region of asymptotic stability]
Consider the dynamical system:

ẋ1 = −x1 + x22
ẋ2 = −x2 + 2x21.

Use the Lyapunov function V (x) = 1
2(x

2
1 + x22) =

1
2∥x∥

2 to determine a region of asymptotic
stability for the equilibrium point xe = ϑ.

Solution: Calculate as follows:

d

dt
V (x(t)) = ∇V (x(t)) · f(x(t)) = x ·

[
−x1 + x22
−x2 + 2x21

]
= −x21(1− 2x2)− x22(1− x1).



Consider the sublevel set of V for level ℓ = 1/8:

Ω1/8 :=

{
x : V (x) <

1

8

}
=

{
x : ∥x∥ < 1

2

}
For x ∈ Ω1/8, x2 ≤ ∥x∥ < 1

2 so that 1 − 2x2 > 0 and also 1 − x1 > 0. So d
dtV (x(t)) < 0

if x(t) ∈ Ω1/8. It follows from Theorem 4.4 in the course notes that Ω1/8 is a region of
asymptotic stability for xe = ϑ. (The value ℓ = 1/8 is not the largest value of ℓ that
works – it would require more work to find that. Any smaller positive value of ℓ would
also give a region of asymptotic stability. )

3. [Stability of a pendulum]
The dynamical system of a pendulum is given by θ̈ = −bθ̇ − sin(θ) where θ is the angle
between the position of the pendulum and straight down and b represents a damping force
such as mild air resistance. We investigate the stability of the equilibrium point θ = θ̇ = 0.

(a) The system energy (kinetic plus potential energy) is given by V (θ, θ̇) = 1
2 θ̇

2+1− cos(θ).
For this part, assume that b = 0. Use the Lyapunov direct method (aka second method)
with V as the Lyapunov function to see what the method implies about the senses (LS,
AS, GAS), if any, in which the system is stable. For consistency, use the coordinates x
with x1 = θ and x2 = θ̇.

Solution: The system dynamics is ẋ = f(x) where f(x) =

[
x2

−bx2 − sin(x1)

]
and the

Lyapunov function is V (x) = 1
2x

2
2 + 1− cos(x1).

d

dt
V (x(t)) = ∇V (x(t)) · f(x(t)) = −bx22(t). (1)

For this problem part we assume b = 0 so that d
dtV (x(t)) = 0. It follows that d

dtV (x(t)) ≤
0 in a neighborhood of xe = ϑ. Therefore, it follows that xe is Lyapunov stable.

Note: Since d
dtV (x(t)) = 0 for all t it follows that V (x(t)) = V (x0) for all t ≥ 0 so if

x(0) ̸= xe then x(t) ̸→ xe. Therefore xe is not asymptotically stable.

(b) Repeat part (a) but now assume b > 0.

Solution: By the calculation in (1), d
dtV (x(t)) = −bx22 ≤ 0 from which we can again

conclude that xe is Lyapunov stable. The function bx22 is positive semidefinite but not
positive definite so we cannot conclude that xe is asymptotically stable using this choice
of V.

Note: A phase plot of this system shows that xe is asymptotically stable. One way to
prove it by the direct Lyapunov method is to use a different Lyapunov function with the
term x22 replaced by a suitable quadratic function of x depending on both coordinates.
Another is to invoke Lasalle’s invariance principle (beyond the scope of the course) to
first conclude that the distance of x(t) to the set where bx2(t) = 0 converges to zero.

(c) Assuming b > 0 as in part (b), examine the linear dynamical system obtained by lin-
earizing the dynamics around the equilibrium point xe = ϑ. What can you conclude
about the stability of xe for the original system (with b > 0) from properties of the
linear system?

Solution: The linearized system is ˙δx = Aδx where

A =
∂f

∂x

∣∣∣∣
xe

=

[
0 1

− cos(x) −b

] ∣∣∣∣
xe

=

[
0 1
−1 −b

]
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The eigenvalues of A are −b±
√
b2−4

2 , which both have negative real parts for any b > 0.
Therefore xe = ϑ is an asymptotically stable equilibrium (by Theorem 4.7 in the course
notes). From this analysis we cannot conclude global stability.

Note that if 0 < 2 < b then the eigenvalues have a nonzero imaginary part, meaning
the pendulum will repeatedly swing past the equilibrium point while settling down to
coverge, while if b ≥ 2 the damping force is so strong that the pendulum monotonically
converges to its equilibrium. Further analysis of this problem shows that the equilibrium
is globally asymptotically stable with the understanding that angles differing by multiples
of 2π are the same. That is becasue if the initial velocity is large enough, the pendulum
could spin around multiple times before slowing down and settling into an equilibrium.

4. [Stable invariant subspaces]
This problem is aimed at understanding the stable invariant subspaces for LTI systems ẋ =
Ax. A change of coordinates can reduce an n× n matrix A to Jordan canonical form, so we
exam the case of a Jordan matrix J with a single Jordan block.

(a) Let λ ∈ C and find eJt for the 3× 3 Jordan block matrix J =

 λ 1 0
0 λ 1
0 0 λ

 .

Solution: By induction on k we find that Jk =

 λk kλk−1
(
k
2

)
λk−2

0 λk kλk−1

0 0 λk

 , where
(
k
2

)
is

the binomial coefficient equal to zero for k = 0, 1 and equal to k(k−1)
2 for k ≥ 2. Then,

eJt =

∞∑
k=0

Jktk

k!

=


∑∞

k=0
λktk

k!

∑∞
k=1

kλk−1tk

k!
1
2

∑∞
k=2

k(k−1)λk−2tk

k!

0
∑∞

k=0
λktk

k!

∑∞
k=1

kλk−1tk

k!

0 0
∑∞

k=0
λktk

k!


=

 eλt teλt t2

2 e
λt

0 eλt teλt

0 0 eλt

 .

(b) What is the necessary and sufficient condition on λ ∈ C such that eJt → 03×3 as t→∞?

(Note that for each k × k Jordan block in the canonical representation for a matrix A
there corresponds an eigenvector v1 and k − 1 generalized eigenvectors v2, . . . vk such
that (Iλ−A)vj = vj−1 for 2 ≤ j ≤ k. The span of v1, . . . , vk is an invariant subspace for
the dynamics ẋ = Ax and it is asymptotically stable if and only if Re(λ) < 0. The joint
span corresponding to all Jordan blocks with Re(λ) < 0 is the stable invariant subspace
for the dynamics.)

Solution: Re(λ) < 0. For example, if Re(λ) = −a < 0 then

|t2eλt| = t2e−at = e−at+2 log t → 0. (2)

(c) What is the necessary and sufficient condition on λ ∈ C such that eJt is bounded for all
t ≥ 0?

Solution: Re(λ) < 0. (If Re(λ) = 0 then the factors t and t2 would make eJt unbounded
as t→∞.)
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5. [Uniqueness of solution to Lyapunov equation for Hurwitz A]
Suppose A is an n×n Hurwitz matrix, suppose Q is a postive-definite symmetric matrix, and
suppose P1, P2 are both n× n matrix solutions to the Lyapunov equation ATP + PA = −Q.

(a) Show that AT (P1 − P2) + (P1 − P2)A = 0n×n.

Solution: It follows from: (ATP1 + P1A)− (ATP2 + P2A) = −Q+Q = 0n×n.

(b) Show that d
dt [e

AT t(P1 − P2)e
At] = 0. (Hint: ˙eAt = AeAt = eAtA.)

Solution: By the product rule for differentiation, part (a), and the hint:

d

dt
[eA

T t(P1 − P2)e
At] = ˙eAT t(P1 − P2)e

At + eA
T t(P1 − P2)

˙eAt

= eA
T t(AT (P1 − P2) + (P1 − P2)A)eAt]

= eA
T t0n×ne

At = 0n×n.

(c) Examine the integral of the expression in part (b) over t ∈ [0,∞) to conclude that
P1 = P2.

Solution: By part (b) and the fundamental theorem of calculus,

0n×n =

∫ ∞

0

d

dt
[eA

T t(P1 − P2)e
At]dt

= eA
T t(P1 − P2)e

At

∣∣∣∣∞
0

= 0n×n − (P1 − P2)

where we used the fact limt→∞ eAt = limt→∞ eA
T t = 0n×n by the assumption that A is

a Hurwitz matrix. It follows that P1 = P2.

6. [Lyapunov stability equation ATP + PA = −Q]
Consider the LTI system ẋ = Ax for

A =

[
−1 −2
3 0

]
. (3)

(a) Directly determine if there is a unique solution to the Lyapunov stability equation ATP+
PA = −I (so take Q = I), and if yes then see if the solution is symmetric and positive
definite. Does your answer determine if the system is globally asymptotically stable? To

be specific, assume that P =

[
a b
c d

]
and start by identifying the set of linear equations

for a, b, c, d.

Solution: The equation ATP + PA = −I is equivalent to[
−2a+ 3b+ 3c −2a− b+ 3d
−2a− c+ 3d −2b− 2c

]
= −I (4)

corresponding to the following augmented matrix in Gaussian elimination form:
−2 3 3 0 −1
−2 −1 0 3 0
−2 0 −1 3 0
0 −2 −2 0 −1

 (5)
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yielding


a
b
c
d

 = 1
12


15
3
3
11

 or P =

[
5/4 1/4
1/4 11/12

]
. Since p11 > 0 and det(P ) > 0 we

see that P is positive definite (by Sylvester’s test – i.e. the leading principle minors have
positive determinants). Therefore the system is asymptotically stable.

(b) Repeat part (a) for

A =

[
3 5
−5 3

]
(6)

Solution: Working as in part (a) we get[
6a− 5b− 5c 5a+ 6b− 5d
5a+ 6c− 5d 5b+ 5c+ 6d

]
= −I. (7)

Solving, we find there is a unique solution given by

P =

[
−1

6 0
0 −1

6

]
(8)

The matrix P is not positive definite, for example it fails Sylvester’s criterion because
the first principle minor, namely −1

6 , has a negative determinant. Or we could note
that both eigenvalues are negative. Therefore, we can conclude that the system is not
asymptotically stable. (If it were we know there would exist a unique, symmetric, positive
definite solution P for any positive definite choice of Q in the Lyapunov equation.)
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