ECE 515/ME 540: Problem Set 4 Stability

Due: Wednesday, September 25, 11:59pm Reading: Course notes, Chapter 4

1. [Stability of systems]

Determine the equilibrium points of the following three dynamical systems and for each equilibrium point, determine in which of the following three senses the equilibrium point is stable: LS - Lyapunov stability, AS - asymptotic stability, GAS – global asymptotic stability. Refer directly to the definitions of stability without using tools such as eigenvector analysis or Lyapunov functions. The systems evolve in real Euclidean spaces \mathbb{R}^2 , \mathbb{R}^2 , and \mathbb{R} , respectively.

(a)
$$
\begin{aligned}\n\dot{x}_1 &= -x_1 \\
\dot{x}_2 &= -x_2(1-x_1^2)\n\end{aligned}
$$
\n(b) $\begin{aligned}\n\dot{x}_1 &= 0 \\
\dot{x}_2 &= -x_1^2\n\end{aligned}$ \n(c) $\dot{x} = x(x-1)(x-2)$

2. [A region of asymptotic stability]

Consider the dynamical system:

$$
\begin{aligned}\n\dot{x}_1 &= -x_1 + x_2^2 \\
\dot{x}_2 &= -x_2 + 2x_1^2.\n\end{aligned}
$$

Use the Lyapunov function $V(x) = \frac{1}{2}(x_1^2 + x_2^2) = \frac{1}{2}||x||^2$ to determine a region of asymptotic stability for the equilibrium point $x_e = \vartheta$.

3. [Stability of a pendulum]

The dynamical system of a pendulum is given by $\ddot{\theta} = -b\dot{\theta} - \sin(\theta)$ where θ is the angle between the position of the pendulum and straight down and b represents a damping force such as mild air resistance. We investigate the stability of the equilibrium point $\theta = \dot{\theta} = 0$.

- (a) The system energy (kinetic plus potential energy) is given by $V(\theta, \dot{\theta}) = \frac{1}{2}\dot{\theta}^2 + 1 \cos(\theta)$. For this part, assume that $b = 0$. Use the Lyapunov direct method (aka second method) with V as the Lyapunov function to see what the method implies about the senses (LS, AS, GAS), if any, in which the system is stable. For consistency, use the coordinates x with $x_1 = \theta$ and $x_2 = \dot{\theta}$.
- (b) Repeat part (a) but now assume $b > 0$.
- (c) Assuming $b > 0$ as in part (b), examine the linear dynamical system obtained by linearizing the dynamics around the equilibrium point $x_e = \vartheta$. What can you conclude about the stability of x_e for the original system (with $b > 0$) from properties of the linear system?

4. [Stable invariant subspaces]

This problem is aimed at understanding the stable invariant subspaces for LTI systems $\dot{x} =$ Ax. A change of coordinates can reduce an $n \times n$ matrix A to Jordan canonical form, so we exam the case of a Jordan matrix J with a single Jordan block.

- (a) Let $\lambda \in \mathbb{C}$ and find e^{Jt} for the 3×3 Jordan block matrix $J =$ $\sqrt{ }$ $\overline{1}$ λ 1 0 $0 \lambda 1$ $0 \quad 0 \quad \lambda$ 1 $|\cdot$
- (b) What is the necessary and sufficient condition on $\lambda \in \mathbb{C}$ such that $e^{Jt} \to 0_{3\times 3}$ as $t \to \infty$? (Note that for each $k \times k$ Jordan block in the canonical representation for a matrix A there corresponds an eigenvector v^1 and $k-1$ generalized eigenvectors $v^2, \ldots v^k$ such that $(I\lambda - A)v^j = v^{j-1}$ for $2 \le j \le k$. The span of v^1, \ldots, v^k is an invariant subspace for the dynamics $\dot{x} = Ax$ and it is asymptotically stable if and only if $Re(\lambda) < 0$. The joint span corresponding to all Jordan blocks with $Re(\lambda) < 0$ is the stable invariant subspace for the dynamics.)
- (c) What is the necessary and sufficient condition on $\lambda \in \mathbb{C}$ such that e^{Jt} is bounded for all $t \geq 0$?

5. [Uniqueness of solution to Lyapunov equation for Hurwitz A]

Suppose A is an $n \times n$ Hurwitz matrix, suppose Q is a postive-definite symmetric matrix, and suppose P_1, P_2 are both $n \times n$ matrix solutions to the Lyapunov equation $A^T P + P A = -Q$.

- (a) Show that $A^T(P_1 P_2) + (P_1 P_2)A = 0_{n \times n}$.
- (b) Show that $\frac{d}{dt}[e^{A^T t}(P_1 P_2)e^{At}] = 0$. (Hint: $e^{At} = Ae^{At} = e^{At}A$.)
- (c) Examine the integral of the expression in part (b) over $t \in [0,\infty)$ to conclude that $P_1 = P_2.$
- 6. [Lyapunov stability equation $A^T P + P A = -Q$] Consider the LTI system $\dot{x} = Ax$ for

$$
A = \left[\begin{array}{cc} -1 & -2 \\ 3 & 0 \end{array} \right].
$$
 (1)

- (a) Directly determine if there is a unique solution to the Lyapunov stability equation $A^T P +$ $PA = -I$ (so take $Q = I$), and if yes then see if the solution is symmetric and positive definite. Does your answer determine if the system is globally asymptotically stable? To be specific, assume that $P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and start by identifying the set of linear equations for a, b, c, d .
- (b) Repeat part (a) for

$$
A = \left[\begin{array}{cc} 3 & 5 \\ -5 & 3 \end{array} \right] \tag{2}
$$