
University of Illinois Fall 2024

ECE 515/ME 540: Problem Set 3: Problems and Solutions
Solutions of State Equations

Due: Wednesday, September 18, 11:59 pm
Reading: Course notes, Chapter 3

1. [Computation of state transition matrix for an LTI system]
The goal of this problem is for you to see how to compute eAt by hand for

A =

 −1 4 6
0 −2 5
0 0 −3

 (1)

three different ways.

(a) Compute eAt by first finding the modal matrix and diagonalizing A.Work to completion.

Solution: We find △(s) = (s+1)(s+2)(s+3) and the eigenvalues are -1,-2,-3. A choice
of the modal matrix, with eigenvectors as columns, is given by

M =

 1 −4 7
0 1 −5
0 0 1

 (2)

and we then find

M−1 =

 1 4 13
0 1 5
0 0 1

 (3)

and check that AM =MΛ where

Λ =

 −1 0 0
0 −2 0
0 0 −3

 . (4)

This gives

eAt =MeΛtM−1 =

 e−t 4e−t − 4e−2t 13e−t − 20e−2t + 7e−3t

0 e−2t 5e−2t − 5e−3t

0 0 e−3t

 (5)

(b) Compute eAt by finding the Laplace transform of eAt and converting to the time domain.
Carry out enough details to make sure you get the same answer as in part (a).

Solution: We find that

Lt(e
At)(s) = (Is−A)−1 =

 s+ 1 −4 −6
0 s+ 2 −5
0 0 s+ 3

−1

(6)

=


1

s+1
4

(s+1)(s+2)
6s+32

(s+1)(s+2)(s+3)

0 1
s+2

5
(s+2)(s+3)

0 0 1
s+3

 (7)



Using partial fraction expansions we find that the inverse Laplace transform gives the
answer found in part (a).

(c) Show how eAt could be computed in this case by solving differential equations in the
time domain to find the columns of eAt. This is possible due to the triangular structure
of A. You do not need to carry out all details.

Solution: The idea is to solve ẋ = Ax for an arbitrary initial condition at t = 0. Then
the ith column of eAt is the solution with initial condition ei, where e1, e2, e3 is the
standard basis for R3. That is, we solve

ẋ1 = −x1 + 4x2 + 6x3

ẋ2 = −2x2 + 5x3

ẋ3 = −3x3

The third equation involves only x3 and is readily solved to give x3(t) = e−3tx3(0). Then
the second equation can be solved to give

x2(t) = e−2tx2(0) + 5

∫ t

0
e−2(t−τ)x3(τ)dτ

= e−2tx2(0) + (5e−2t − 5e−3t)x3(0).

Finally, the first equation can be solved to give

x1(t) = e−tx1(0) + 4

∫ t

0
e−(t−τ)(4x2(τ) + 6x3(τ))dτ

= e−tx1(0) + (4e−t − 4e−2t)x2(0) + (13e−t − 20e−2t + 7e−3t)x3(0)

We then see that the ith column of eAt as found in parts (a) and (b) is given by the
solution of ẋ = Ax with initial condition x(0) = ei for i = 1, 2, 3.

2. [Constant output linear system model]
Consider a linear time invariant (LTI) system with zero input – so the matrices B and D are
irrelevant.

(a) Let c be a nonzero scalar constant. Give an example of matrices A, C, and a constant
vector xo such that the linear system model with matrices A and C and initial state xo
yields the output y(t) = c for all t ≥ 0.

Solution: One choice is to let the state space be R (i.e. n = 1) and take A to be the
scalar constant 0, let C be the 1× 1 identity matrix (i.e. C = 1) and let the initial state
be given by xo = c. Then x(t) = y(t) = c for all t ≥ 0.

(b) Is there a possible answer to part (a) above such that the matrix A is full rank?

Solution: (Other solutions may be possible.) Consider any LTI system model with B
and D equal to matrices of all zeros such that y(t) = c for all t ≥ 0. Then CeAtx0 = c
for all t ≥ 0. Differentiating each side k times yields CAkeAtx0 = ϑ for all k ≥ 1. Setting
t = 0 yields CAkx0 = ϑ for all k ≥ 1. For the sake of argument by contradiction, suppose
that A has full rank. By the Cayley-Hamilton theorem, △(A) = An + α1A

n−1 + · · · +
αn−1A+αnI. Furthermore, αn = (−1)n detA ̸= 0, due to the assumption that A has full
rank. Therefore I can be written as a linear combination of A,A2, . . . , An so it follows
that Cx0 = 0. This contradicts the requirement that y(0) = Cx0 = c ̸= 0. Thus, the
answer is no.
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3. [On the nonuniqueness of the fundamental matrix for LTV systems]
Consider an LTV system defined by ẋ = A(t)x. Recall that the fundamental matrix (U(t) :
−∞ < t < ∞) is given by U(t) = [ψ1(t) · · ·ψn(t)] where ψ1, . . . , ψn are linearly independent
(as vectors in Cn(−∞,∞), the space of continuous, Rn-valued functions on (−∞,∞)) solu-
tions of ẋ = A(t)x for different values of x(t0) for some time t0. Suppose U is one choice of

fundamental matrix and U(t) = [ψ
1
(t) · · ·ψn

(t)] is another choice.

(a) Explain why there is a nonsingular matrix P such that U(t) = U(t)P for all t.

Solution: There are multiple ways to go about this. Here are two solutions. Solution
1: Since ψ1, . . . , ψn is a basis for the vector space of all solutions to ẋ = A(t)x, for each

k we can take the kth column of P to be the vector of coordinates of ψ
k
with respect to

the basis ψ1, . . . , ψn. In other words, p1,kψ1 + · · ·+ pn,kψn = ψk. The matrix P must be

nonsingular because ψ
1
, . . . , ψ

n
is also a basis.

Solution 2: For ψ1, . . . , ψn to be linearly independent solutions, the columns of U(t)
must be linearly independent for all t (or else for every t they would not be linearly
independent.) The same for U. So we can let P = U−1(t0)U(t0) for a fixed value of
t0. Then if we define D(t) = U(t) − U(t)P we have D(t0) = 0n×n and D satisfies the
differential equation Ḋ = A(t)D which by uniqueness of solutions to the linear differential
equation implies D(t) = 0 for all t. Thus, U(t) = U(t)P for all t.

(b) Recall that the state transition matrix is given by ϕ(t, τ) = U(t)U−1(τ). Does the state
transition matrix depend on the choice of U? Justify your answer.

Solution: Using U instead of U would give

U(t)U
−1

(τ) = U(t)P

(
P−1U−1(τ)

)
= U(t)U−1(τ).

Thus, ϕ does not depend on the choice of U.

4. [A linear system with speed scaling]
An example of linear time-varying system is given by ẋ = A(t)x, where A(t) = s(t)A for all
−∞ < t <∞, where s is a piecewise continuous nonnegative function and A is a fixed matrix.
An interpretation is that s(t) is the speed of the system at time t. Note that if s is a constant
function then the system is time invariant.

(a) Let (U(t) : −∞ < t < ∞) be the specific choice of fundamental matrix for the system
such that U(0) = I. Show that U(t) = eAτ(t), where τ(t) =

∫ t
0 s(u)du and give an

intuitive explanation of this expression.

Solution: We prove that U = U where U(t) = eAτ(t). It suffices to note that U(0) =

I and then to check that U̇(t) = A(t)U(t). By the chain rule of calculus, U̇(t) =

∂eAτ

∂τ

∣∣∣∣
τ=τ(t)

dτ(t)
dt = AeAτ(t)s(t) = A(t)U(t), as desired. Intuitively, U traces out the

same trajectory as the LTI system for matrix A, but at varying speed. Since τ(t) is
the integral of speed up to time t, it indicates how far the system has traveled along its
trajectory by time t. This is easier to understand for t ≥ 0, but the intuition is the same
for t ≤ 0 going backwards in time.

(b) Find a similar expression for the state transition matrix (ϕ(u, v) : u, v ∈ (−∞,∞)).

Solution: Using the facts U−1(v) = e−Aτ(v) and eaAebA = e(a+b)A for real values of
a and b, we have ϕ(u, v) = U(u)U−1(v) = eA(τ(u)−τ(v)) = eA

∫ u
v s(t)dt. (Note that the
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solutions in this problem don’t require s to be nonnegative. If s can take both positive
and negative values then the time varying system can run both forwards and backwards
along the trajectory of the time invariant system for matrix A.)
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