ECE 515/ME 540: Problem Set 3 Solutions of State Equations

Due: Wednesday, September 18, 11:59 pm **Reading:** Course notes, Chapter 3

1. [Computation of state transition matrix for an LTI system]

The goal of this problem is for you to see how to compute e^{At} by hand for

$$A = \begin{bmatrix} -1 & 4 & 6\\ 0 & -2 & 5\\ 0 & 0 & -3 \end{bmatrix}$$
(1)

three different ways.

- (a) Compute e^{At} by first finding the modal matrix and diagonalizing A. Work to completion.
- (b) Compute e^{At} by finding the Laplace transform of e^{At} and converting to the time domain. Carry out enough details to make sure you get the same answer as in part (a).
- (c) Show how e^{At} could be computed in this case by solving differential equations in the time domain to find the columns of e^{At} . This is possible due to the triangular structure of A. You do not need to carry out all details.

2. [Constant output linear system model]

Consider a linear time invariant (LTI) system with zero input – so the matrices B and D are irrelevant.

- (a) Let c be a nonzero scalar constant. Give an example of matrices A, C, and a constant vector x_o such that the linear system model with matrices A and C and initial state x_o yields the output y(t) = c for all $t \ge 0$.
- (b) Is there a possible answer to part (a) above such that the matrix A is full rank?

3. [On the nonuniqueness of the fundamental matrix for LTV systems]

Consider an LTV system defined by $\dot{x} = A(t)x$. Recall that the fundamental matrix $(U(t) : -\infty < t < \infty)$ is given by $U(t) = [\psi^1(t) \cdots \psi^n(t)]$ where ψ^1, \ldots, ψ^n are linearly independent (as vectors in $C^n(-\infty,\infty)$), the space of continuous, \mathbb{R}^n -valued functions on $(-\infty,\infty)$) solutions of $\dot{x} = A(t)x$ for different values of $x(t_0)$ for some time t_0 . Suppose U is one choice of fundamental matrix and $\overline{U}(t) = [\overline{\psi}^1(t) \cdots \overline{\psi}^n(t)]$ is another choice.

- (a) Explain why there is a nonsingular matrix P such that $\overline{U}(t) = U(t)P$ for all t.
- (b) Recall that the state transition matrix is given by $\phi(t,\tau) = U(t)U^{-1}(\tau)$. Does the state transition matrix depend on the choice of U? Justify your answer.

4. [A linear system with speed scaling]

An example of linear time-varying system is given by $\dot{x} = A(t)x$, where A(t) = s(t)A for all $-\infty < t < \infty$, where s is a piecewise continuous nonnegative function and A is a fixed matrix. An interpretation is that s(t) is the speed of the system at time t. Note that if s is a constant function then the system is time invariant.

- (a) Let $(U(t): -\infty < t < \infty)$ be the specific choice of fundamental matrix for the system such that U(0) = I. Show that $U(t) = e^{A\tau(t)}$, where $\tau(t) = \int_0^t s(u) du$ and give an intuitive explanation of this expression.
- (b) Find a similar expression for the state transition matrix $(\phi(u, v) : u, v \in (-\infty, \infty))$.