
University of Illinois Fall 2024

ECE 515/ME 540: Problem Set 2: Problems and Solutions
Vector Spaces

Due: Wednesday, September 11, 11:59pm
Reading: Course notes, Chapter 2

1. [Elementary row operations and Gaussian elimination]
Consider the following system of linear equations for unknowns x, y, z :

2x+ 3y + z = 5

4x+ 3y + 2z = 4

x+ y + z = 12

Solve for x, y, z using the method of Gaussian elimination. Show the augmented matrix at
each step as in https://en.wikipedia.org/wiki/Gaussian elimination.

Solution: The sequence of augmented matrices is as follows: 2 3 1 5
4 3 2 4
1 1 1 12


 2 3 1 5

0 −3 0 −6
0 −0.5 0.5 9.5


 2 3 1 5

0 −3 0 −6
0 0 0.5 10.5


From which we sequentially find z = 21, y = 2, and x = −11.

2. [Equality of dimensions of row and column span of a matrix]
Consider the following two elementary row operations on a matrix: swapping two rows or
adding a constant times one row to another. Such operations can transform any m × n
matrix into row echelon form. See https://en.wikipedia.org/wiki/Gaussian elimination. For
example, suppose a 5×8 matrix A can be reduced to the following matrix T by such operations:

T =


a ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 b ∗ ∗ ∗ ∗ ∗
0 0 0 c ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,

such that a, b, c are nonzero constants and each asterisk represents an arbitrary number.

(a) What is a basis for the space spanned by the rows of T and what is the dimension of
the space? Explain.

Solution: The first three rows are linearly independent because if there were constants
a1, a2, a3 such that a1r

1 + a2r
2 + a3r

3 = 0 then a1a = 0 so a1 = 0, and then a2b = 0 so



a2 = 0, and then a3c = 0 so a3 = 0. The fourth and fifth rows are trivially in the linear
span of the first three rows. So the first three rows form a basis for the space spanned
by the rows of T and the dimension of the row space is three.

(b) What is a basis for the space spanned by the columns of T and what is the dimension
of the space? Explain.

Solution: Similarly the first, third, and fourth columns of T are linearly independent
and all other columns are in the linear span of those three vectors. So those three
columns form a basis for the column span of T which has dimensions three.

(c) Are the row spans of A and T necessarily the same? Are the dimensions of the spaces
spanned by the rows of A and T , respectively, the same? Explain.

Solution: Yes, swapping two vectors or adding a constant times one vector to another
does not change the span of the vectors. Since the spaces spanned by the rows of A and
T are the same, those spaces have the same dimension.

(d) Are the column spans of A and T necessarily the same? Are the dimensions of the spaces
spanned by the columns of A and T , respectively, the same? Explain.

Solution: No, the column spans of A and T don’t have to be the same. For example, A
could have the same first three rows as T and the last two rows of A could be the same
as the third row of T , and those two matrices have different column spans.

An elementary row operation induces a change of coordinates on the column vectors of
a matrix, which can be represented by multiplication of those vectors by a nonsingular
matrix P. For example, if c represents one of the columns and the first and second rows
are swapped, then c is transformed to Pc where

P =


0 1 0 0 0 · · ·
1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
...

...
...

...
. . .

 ,

and in this case P = P−1. Or if α times the first row is added to the second row then c
is transformed to Pc where

P =


1 0 0 0 0 · · ·
α 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
...

...
...

...
...

. . .

 ,

and P−1 is the same as P with α replaced by −α corresponding to subtracting α times
the first row from the second row. A change of coordinates does not change the dimension
of a subspace, so the dimensions of the column spans of A and T are equal.

(e) Explain why the dimension of the row span is equal to the dimension of the column span
for any m× n matrix.

Solution: The story is the same as this example for arbitrary matrices. The result is
true for matrices in row echelon form, and any matrix can be transformed to row echelon
form by elementary row operations which preserve the dimensions of the row span and
the column span.
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3. [The determinant of a matrix]
There are many equivalent ways to define determinants of matrices. Here we describe an
axiomatic approach. Let n ≥ 1 and consider the space of n×n matrices, with real or complex
valued entries. Given such a matrix A let c1, . . . , cn denote the columns of the matrix. Then
determinant, denoted by det, is the mapping from n× n matrices to scalar values such that:

Linearity in each column If c1, . . . , cn represent the columns of A and a, b are scalars and
y, z are n-vectors then

det(c1, . . . , ci−1, ay + bz, ci+1, . . . , cn) =

adet(c1, . . . , ci−1, y, ci+1, . . . , cn) + bdet(c1, . . . , ci−1, z, ci+1, . . . , cn)

Zero if two columns are the same If ci = cj for distinct columns i and j of A then
detA = 0.

Normalization det I = 1 where I is the n× n identity matrix.

Using the above axioms, prove the following properties of det .

(a) Show that if B is obtained from A by adding a scalar multiple of one column of A to
another column of A then detB = detA.

Solution: If B is obtained from A by adding aci to cj we use the linearity property to
get:

detB = det(c1, . . . , cj−1, cj + aci, cj+1, . . . , cn) =

det(c1, . . . , cj−1, cj , cj+1, . . . , cn) + adet(c1, . . . , cj−1, ci, cj+1, . . . , cn) = detA+ 0.

The zero comes because the ith and jth columns are the same in the matrix indicated.

(b) Show that if B is obtained from A by swapping two columns of A then detB = −detA.
(Hint: Use part (a) and the linearity property.)

Solution: Consider a sequence of matrices starting from A such that the ith and jth

columns are the only ones modified and are as shown:

ci cj matrixA
ci ci + cj added ith column to jth

−cj ci + cj subtracted jth column from ith

−cj ci added ith column to jth

cj ci multiplied ith column by -1 to obtain matrix B

The only step that changes det is the one such that the ith column is multiplied by -1,
so that detB = −detA.

(c) Show that if there exists a mapping det satisfying the axioms then it is unique. Hint:
The value of detA is uniquely determined by the axioms if A has a column of all zeros
(by the linearity property) or if A is a diagonal matrix (by the linearity in each column
and normalization axioms. So it suffices to show that any matrix A can be reduced to
one of those matrices by using the elementary column operations of the following type:
swapping two columns or adding a scalar multiple of one column to another column
because the effects of each of those operations on the determinant are determined by the
axioms.
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Solution: Such elementary column operations can be used to transform A to reduced
column echelon form A′. If one of the columns of A′ is the zero column ϑ then detA′ =
detA = 0. Otherwise A′ is a lower triangular matrix with nonzero diagonal elements so
additional elementary column operation can reduce it to a diagonal matrix.

(d) Let d̃etA =
∑

π sgn(π)
∏n

j=1 c
j
π(j), where the sum is over all n! permutations π and

sgn(π) = 1 if π can be written as a composition of an even number of transpositions and
sgn(π) = −1 if π can be written as a composition of an odd number of transpositions.

Show that d̃et satisfies the three axioms given in the problem statement. (This shows

the existence of det and det = d̃et.)

Solution: Linearity in each column Let cji denote the i
th element of the jth column.

Then

d̃et(c1, ..., ci−1, ay + bz, ci+1, ..., cn)

=
∑
π

sgn(π)

 n∏
j=1,j ̸=i

cjπ(j)

 (ayπ(i) + bzπ(i))

=
∑
π

sgn(π)

 n∏
j=1,j ̸=i

cjπ(j)

 ayπ(i) +
∑
π

sgn(π)

 n∏
j=1,j ̸=i

cjπ(j)

 bzπ(i)

= ad̃et(c1, . . . , ci−1, y, ci+1, . . . , cn) + bd̃et(c1, . . . , ci−1, z, ci+1, . . . , cn)

Zero if two columns are the same. If columns j and j′ are the same, then the terms
in the sum defining d̃et can be grouped into pairs {π, π′} such that π′ is obtained from
π by transposing π(j) and π(j′). The products for the two permutations in each pair

sum to zero because sgn(π) = −sgn(π′), so the total sum defining d̃et is zero.

Normalization The only nonzero term in the sum defining d̃et(I) is for the identity

permutation yielding a product equal to one so d̃et(I) = 1.

(e) A very important and useful property of det for square matrices A with real values is
that the absolute value, |det(A)|, is the volume of the parallelepiped generated by the
columns of A. Prove this property. (Hint: Say a matrix A satisfies property V if |det(A)|
is the volume of the parallelepiped generated by the columns of A. Using the axioms
and arguments from part (c) above show that all matrices have property V.) (Note: This
property is nicely illustrated in the utube video The essence of linear algebra Chapter 6
https://www.youtube.com/watch?v=Ip3X9LOh2dk).

Solution: By the result of part (c) it is sufficient to note that any matrix with a zero
column or any diagonal matrix trivially satisfies property V and if A has property V
and B is obtained from B by either of the two types of elementary column operations:
(i) swapping two columns or (ii) adding a constant times one column to another column,
then B has property V. (i) Swapping two columns changes neither the parallelepiped
generated by the columns of A nor |detA| so if A has property V than so does any
matrix obtained by swapping columns of A. (ii) If B is obtained from A by changing cj to
cj+aci then detB = detA. So it remains to argue that the volume of the parallelepipeds
generated by the column vectors of A and B have the same volumes. For either A or B,
the volume is equal to the n−1-dimensional volume of the base parallelepiped generated
by {ck : k ̸= j} times the distance between the hyperplane spanned by {ck : k ̸= j} and
the affine hyperplane obtained by displacing the first hyperplane by the vector in the
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jth column. Since ci is in the base hyperplane, whether that hyperplane is displaced by
cj alone or by cj + aci, it gives the same affine hyperplane, and hence the same volume.

4. [Orthogonal subspaces]
Let X and Y be vector spaces over the complex field C, each equipped with an inner product.

(a) Given a subspace V of Y, let V⊥ denote the set of all vectors in Y that are orthogonal
to all vectors in V. Show that V⊥ is a subspace of Y.

Solution: By its definition, V⊥ is a subset of Y. It remains to show that V⊥ itself is a
vector space. As noted in class, most of the required properties follow simply because
V⊥ is a subset of Y. It therefore suffices to show that for any y1, y2 ∈ V⊥ and any
α1, α2 ∈ C, that α1y1 + α2y2 ∈ V⊥. To prove it, if the given conditions hold then for all
v ∈ V , ⟨v, α1y1 + α2y2⟩ = α1⟨v, y1⟩+ α2⟨v, y2⟩ = 0 + 0 = 0, so that α1y1 + α2y2 ∈ V⊥.

(b) Suppose A is a linear mapping from X to Y with an adjoint mapping A∗. Show that
N (A∗) = R⊥(A).

Solution: Given any y ∈ Y, the following statements are equivalent because each state-
ment is equivalent to the one just above or below it:

y ∈ R⊥(A)

⟨A(x), y⟩ = 0 for all x ∈ X
⟨x,A∗(y)⟩ = 0 for all x ∈ X
A∗(y) = 0

y ∈ N (A∗).

5. [Eigenvalues and the trace of a square matrix A]
The trace of a square matrix F , denoted by Tr(F ), is the sum of the diagonal elements of F .

(a) Let m,n be positive integers. The collection of m × n matrices with complex elements
is a vector space over C, which we denote by Mm,n(C). Given A,B ∈ Mm,n(C), let
⟨A,B⟩ = Tr(A∗B), where A∗ is the complex conjugate transpose of A. Show that ⟨., .⟩ is
an inner product for Mm,n(C) over C. The corresponding norm induced on the elements
of Mm,n(C) is called the Frobenius norm. How are ⟨., .⟩ and the Frobenius norm related
to the usual Euclidean inner product and vector norm?

Solution: For 1 ≤ i ≤ n, (A∗B)i,i =
∑

j aj,ibj,i. Therefore, ⟨A,B⟩ =
∑

i

∑
j aj,ibj,i. In

words, ⟨A,B⟩ is the Euclidean inner product if we identify a matrix in Mm,n(C) with
an mn-dimensional vector in Cmn by vertically stacking up the columns. From this it is
easy to verify the three properties defining an inner product, namely ⟨A,B⟩ = ⟨B,A⟩,
linearity of the mapping A 7→ ⟨A,B⟩ and ⟨A,A⟩ ≥ 0 with equality if and only if A is
the all zero matrix Z. Alternatively, we could just note that the usual Euclidean inner
product is known to be an inner product. The Frobenius norm of a matrix A is given

by
√
⟨A,A⟩ =

√∑
i

∑
j |ai,j |2.

Altenative solution We prove that ⟨·, ·⟩ as defined satisfies the axioms of a norm.
Again we use the fact ⟨A,B⟩ =

∑
i

∑
j aj,ibj,i.
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⟨A,αB + βC⟩ =
∑
i

∑
j

aj,i(αbj,i + βcj,i)

=
∑
i

∑
j

αaj,ibj,i + β
∑
i

∑
j

aj,icj,i

= α⟨A,B⟩+ β⟨A,C⟩

⟨A,B⟩ =
∑

i

∑
j aj,ibj,i =

∑
i

∑
j aj,ibj,i = ⟨B,A⟩

⟨A,A⟩ =
∑

i

∑
j aj,iaj,i =

∑
i

∑
j |aj,i|2 ≥ 0, with equality if and only if A is the all

zero matrix.

(b) Show that if A is an m × n matrix and B is an n ×m matrix then Tr(AB) = Tr(BA).
(Hint: Solve directly – this is not a continuation of part (a).)

Solution: Both are equal to
∑

i

∑
j ai,jbj,i.

(c) Use the fact that A is similar to its Jordon canonical form J (i.e. there is a nonsingular
matrix P such that PAP−1 = J) to show that Tr(A) is equal to the sum of the eigenvalues
of A.

Solution: The diagonal elements of J are the eigenvalues of A, so Tr(J) is the sum of the
eigenvalues of A. Furthermore, by part (b) above, Tr(J) = Tr(PAP−1) = Tr(AP−1P ) =
Tr(AI) = Tr(A).

(d) Using the fundamental theorem of algebra, identify the coefficient of λn−1 in the charac-
teristic polynomial △(λ) of A and then use properties of det and the definition of △(λ)
to again show that Tr(A) is equal to the sum of the eigenvalues of A.

Solution: On one hand, by the fundamental theorem of algebra, △(λ) = (λ−λ1) · · · (λ−
λn) where λ1, . . . , λn are the roots of the polynomial which are also the eigenvalues of
A. Multiplying out the terms we see that the coefficient of λn−1 is the negative sum of
the eigenvalues.

On the other hand, by definition we have △(λ) = det(Iλ−A). Using the formula for det
involving a sum over permutations, we can see that the terms in det(Iλ − A) that are
scalars times λn−1 must come from the identity permutation – all other permutations
would miss at least two diagonal elements and involve smaller powers of λ. So each term
with λn−1 comes from the product of λ in n − 1 diagonal elements of λI − A times
−ai,i for some i. Summing over i yields that the coefficient of λn−1 in △(λ) is −Tr(A).
Equating the two expressions for the coefficient of λn−1 in △(λ) gives the desired result.
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