ECE 515/ME 540: Problem Set 2 Vector Spaces

Due: Wednesday, September 11, 11:59pm Reading: Course notes, Chapter 2

1. [Elementary row operations and Gaussian elimination]

Consider the following system of linear equations for unknowns x, y, z :

$$
2x + 3y + z = 5
$$

$$
4x + 3y + 2z = 4
$$

$$
x + y + z = 12
$$

Solve for x, y, z using the method of Gaussian elimination. Show the augmented matrix at each step as in https://en.wikipedia.org/wiki/Gaussian elimination.

2. [Equality of dimensions of row and column span of a matrix]

Consider the following two elementary row operations on a matrix: swapping two rows or adding a constant times one row to another. Such operations can transform any $m \times n$ matrix into row echelon form. See https://en.wikipedia.org/wiki/Gaussian elimination. For example, suppose a 5×8 matrix A can be reduced to the following matrix T by such operations:

$$
T = \left[\begin{array}{cccccc} a & * & * & * & * & * & * & * \\ 0 & 0 & b & * & * & * & * & * \\ 0 & 0 & 0 & c & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right],
$$

such that a, b, c are nonzero constants and each asterisk represents an arbitrary number.

- (a) What is a basis for the space spanned by the rows of T and what is the dimension of the space? Explain.
- (b) What is a basis for the space spanned by the columns of T and what is the dimension of the space? Explain.
- (c) Are the row spans of A and T necessarily the same? Are the dimensions of the spaces spanned by the rows of A and T , respectively, the same? Explain.
- (d) Are the column spans of A and T necessarily the same? Are the dimensions of the spaces spanned by the columns of A and T , respectively, the same? Explain.
- (e) Explain why the dimension of the row span is equal to the dimension of the column span for any $m \times n$ matrix.

3. [The determinant of a matrix]

There are many equivalent ways to define determinants of matrices. Here we describe an axiomatic approach. Let $n \geq 1$ and consider the space of $n \times n$ matrices, with real or complex valued entries. Given such a matrix A let c^1, \ldots, c^n denote the columns of the matrix. Then determinant, denoted by det, is the mapping from $n \times n$ matrices to scalar values such that: **Linearity in each column** If c^1, \ldots, c^n represent the columns of A and a, b are scalars and y, z are *n*-vectors then

$$
\det(c^1, \dots, c^{i-1}, ay + bz, c^{i+1}, \dots, c^n) = a \det(c^1, \dots, c^{i-1}, y, c^{i+1}, \dots, c^n) + b \det(c^1, \dots, c^{i-1}, z, c^{i+1}, \dots, c^n)
$$

Zero if two columns are the same If $c^i = c^j$ for distinct columns i and j of A then $\det A = 0.$

Normalization det $I = 1$ where I is the $n \times n$ identity matrix.

Using the above axioms, prove the following properties of det.

- (a) Show that if B is obtained from A by adding a scalar multiple of one column of A to another column of A then det $B = \det A$.
- (b) Show that if B is obtained from A by swapping two columns of A then det $B = -$ det A. (Hint: Use part (a) and the linearity property.)
- (c) Show that if there exists a mapping det satisfying the axioms then it is unique. Hint: The value of det A is uniquely determined by the axioms if A has a column of all zeros (by the linearity property) or if A is a diagonal matrix (by the linearity in each column and normalization axioms. So it suffices to show that any matrix A can be reduced to one of those matrices by using the elementary column operations of the following type: swapping two columns or adding a scalar multiple of one column to another column because the effects of each of those operations on the determinant are determined by the axioms.
- (d) Let $\widetilde{\det} A = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{j=1}^n c_{\pi}^j$ $\int_{\pi(j)}^j$, where the sum is over all n! permutations π and $sgn(\pi) = 1$ if π can be written as a composition of an even number of transpositions and $sgn(\pi) = -1$ if π can be written as a composition of an odd number of transpositions. Show that det satisfies the three axioms given in the problem statement. (This shows the existence of det and $det = det$.)
- (e) A very important and useful property of det for square matrices A with real values is that the absolute value, $|\det(A)|$, is the volume of the parallelepiped generated by the columns of A. Prove this property. (Hint: Say a matrix A satisfies property V if $|\det(A)|$) is the volume of the parallelepiped generated by the columns of A. Using the axioms and arguments from part (c) above show that all matrices have property V .) (Note: This property is nicely illustrated in the utube video The essence of linear algebra Chapter 6 https://www.youtube.com/watch?v=Ip3X9LOh2dk).

4. [Orthogonal subspaces]

Let $\mathcal X$ and $\mathcal Y$ be vector spaces over the complex field $\mathbb C$, each equipped with an inner product.

- (a) Given a subspace V of \mathcal{Y} , let \mathcal{V}^{\perp} denote the set of all vectors in \mathcal{Y} that are orthogonal to all vectors in $\mathcal V$. Show that $\mathcal V^{\perp}$ is a subspace of $\mathcal Y$.
- (b) Suppose A is a linear operator from X to Y with an adjoint operator \mathcal{A}^* . Show that $\mathcal{N}(\mathcal{A}^*)=\mathcal{R}^{\perp}(\mathcal{A}).$

5. [Eigenvalues and the trace of a square matrix A]

The trace of a square matrix F, denoted by $Tr(F)$, is the sum of the diagonal elements of F.

- (a) Let m, n be positive integers. The collection of $m \times n$ matrices with complex elements is a vector space over \mathbb{C} , which we denote by $\mathcal{M}_{m,n}(\mathbb{C})$. Given $A, B \in \mathcal{M}_{m,n}(\mathbb{C})$, let $\langle A, B \rangle = \text{Tr}(A^*B)$, where A^* is the complex conjugate transpose of A. Show that $\langle ., . \rangle$ is an inner product for $\mathcal{M}_{m,n}(\mathbb{C})$ over \mathbb{C} . The corresponding norm induced on the elements of $\mathcal{M}_{m,n}(\mathbb{C})$ is called the Frobenius norm. How are $\langle .,.\rangle$ and the Frobenius norm related to the usual Euclidean inner product and vector norm?
- (b) Show that if A is an $m \times n$ matrix and B is an $n \times m$ matrix then $Tr(AB) = Tr(BA)$. (Hint: Solve directly – this is not a continuation of part (a).)
- (c) Use the fact that A is similar to its Jordon canonical form J (i.e. there is a nonsingular matrix P such that $PAP^{-1} = J$ to show that $Tr(A)$ is equal to the sum of the eigenvalues of A.
- (d) Using the fundamental theorem of algebra, identify the coefficient of λ^{n-1} in the characteristic polynomial $\Delta(\lambda)$ of A and then use properties det and the definition of $\Delta(\lambda)$ to again show that $Tr(A)$ is equal to the sum of the eigenvalues of A.