ECE 515/ME 540: Problem Set 2 Vector Spaces

Due: Wednesday, September 11, 11:59pm **Reading:** Course notes, Chapter 2

1. [Elementary row operations and Gaussian elimination]

Consider the following system of linear equations for unknowns x, y, z:

$$2x + 3y + z = 5$$
$$4x + 3y + 2z = 4$$
$$x + y + z = 12$$

Solve for x, y, z using the method of Gaussian elimination. Show the augmented matrix at each step as in https://en.wikipedia.org/wiki/Gaussian_elimination.

2. [Equality of dimensions of row and column span of a matrix]

Consider the following two elementary row operations on a matrix: swapping two rows or adding a constant times one row to another. Such operations can transform any $m \times n$ matrix into row echelon form. See https://en.wikipedia.org/wiki/Gaussian_elimination. For example, suppose a 5×8 matrix A can be reduced to the following matrix T by such operations:

such that a, b, c are nonzero constants and each asterisk represents an arbitrary number.

- (a) What is a basis for the space spanned by the rows of T and what is the dimension of the space? Explain.
- (b) What is a basis for the space spanned by the columns of T and what is the dimension of the space? Explain.
- (c) Are the row spans of A and T necessarily the same? Are the dimensions of the spaces spanned by the rows of A and T, respectively, the same? Explain.
- (d) Are the column spans of A and T necessarily the same? Are the dimensions of the spaces spanned by the columns of A and T, respectively, the same? Explain.
- (e) Explain why the dimension of the row span is equal to the dimension of the column span for any $m \times n$ matrix.

3. [The determinant of a matrix]

There are many equivalent ways to define determinants of matrices. Here we describe an axiomatic approach. Let $n \ge 1$ and consider the space of $n \times n$ matrices, with real or complex valued entries. Given such a matrix A let c^1, \ldots, c^n denote the columns of the matrix. Then determinant, denoted by det, is the mapping from $n \times n$ matrices to scalar values such that:

Linearity in each column If c^1, \ldots, c^n represent the columns of A and a, b are scalars and y, z are *n*-vectors then

$$det(c^{1}, \dots, c^{i-1}, ay + bz, c^{i+1}, \dots, c^{n}) = a det(c^{1}, \dots, c^{i-1}, y, c^{i+1}, \dots, c^{n}) + b det(c^{1}, \dots, c^{i-1}, z, c^{i+1}, \dots, c^{n})$$

Zero if two columns are the same If $c^i = c^j$ for distinct columns *i* and *j* of *A* then det A = 0.

Normalization det I = 1 where I is the $n \times n$ identity matrix.

Using the above axioms, prove the following properties of det.

- (a) Show that if B is obtained from A by adding a scalar multiple of one column of A to another column of A then det $B = \det A$.
- (b) Show that if B is obtained from A by swapping two columns of A then det $B = -\det A$. (Hint: Use part (a) and the linearity property.)
- (c) Show that if there exists a mapping det satisfying the axioms then it is unique. Hint: The value of det A is uniquely determined by the axioms if A has a column of all zeros (by the linearity property) or if A is a diagonal matrix (by the linearity in each column and normalization axioms. So it suffices to show that any matrix A can be reduced to one of those matrices by using the elementary column operations of the following type: swapping two columns or adding a scalar multiple of one column to another column because the effects of each of those operations on the determinant are determined by the axioms.
- (d) Let $\widetilde{\det}A = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{j=1}^{n} c_{\pi(j)}^{j}$, where the sum is over all n! permutations π and $\operatorname{sgn}(\pi) = 1$ if π can be written as a composition of an even number of transpositions and $\operatorname{sgn}(\pi) = -1$ if π can be written as a composition of an odd number of transpositions. Show that $\widetilde{\det}$ satisfies the three axioms given in the problem statement. (This shows the existence of det and det = $\widetilde{\det}$.)
- (e) A very important and useful property of det for square matrices A with real values is that the absolute value, $|\det(A)|$, is the volume of the parallelepiped generated by the columns of A. Prove this property. (Hint: Say a matrix A satisfies property V if $|\det(A)|$ is the volume of the parallelepiped generated by the columns of A. Using the axioms and arguments from part (c) above show that all matrices have property V.) (Note: This property is nicely illustrated in the utube video *The essence of linear algebra Chapter 6* https://www.youtube.com/watch?v=Ip3X9LOh2dk).

4. [Orthogonal subspaces]

Let \mathcal{X} and \mathcal{Y} be vector spaces over the complex field \mathbb{C} , each equipped with an inner product.

- (a) Given a subspace \mathcal{V} of \mathcal{Y} , let \mathcal{V}^{\perp} denote the set of all vectors in \mathcal{Y} that are orthogonal to all vectors in \mathcal{V} . Show that \mathcal{V}^{\perp} is a subspace of \mathcal{Y} .
- (b) Suppose \mathcal{A} is a linear operator from \mathcal{X} to \mathcal{Y} with an adjoint operator \mathcal{A}^* . Show that $\mathcal{N}(\mathcal{A}^*) = \mathcal{R}^{\perp}(\mathcal{A}).$

5. [Eigenvalues and the trace of a square matrix A]

The trace of a square matrix F, denoted by Tr(F), is the sum of the diagonal elements of F.

- (a) Let m, n be positive integers. The collection of $m \times n$ matrices with complex elements is a vector space over \mathbb{C} , which we denote by $\mathcal{M}_{m,n}(\mathbb{C})$. Given $A, B \in \mathcal{M}_{m,n}(\mathbb{C})$, let $\langle A, B \rangle = \operatorname{Tr}(A^*B)$, where A^* is the complex conjugate transpose of A. Show that $\langle ., . \rangle$ is an inner product for $\mathcal{M}_{m,n}(\mathbb{C})$ over \mathbb{C} . The corresponding norm induced on the elements of $\mathcal{M}_{m,n}(\mathbb{C})$ is called the Frobenius norm. How are $\langle ., . \rangle$ and the Frobenius norm related to the usual Euclidean inner product and vector norm?
- (b) Show that if A is an $m \times n$ matrix and B is an $n \times m$ matrix then Tr(AB) = Tr(BA). (Hint: Solve directly – this is not a continuation of part (a).)
- (c) Use the fact that A is similar to its Jordon canonical form J (i.e. there is a nonsingular matrix P such that $PAP^{-1} = J$) to show that Tr(A) is equal to the sum of the eigenvalues of A.
- (d) Using the fundamental theorem of algebra, identify the coefficient of λ^{n-1} in the characteristic polynomial $\Delta(\lambda)$ of A and then use properties det and the definition of $\Delta(\lambda)$ to again show that $\operatorname{Tr}(A)$ is equal to the sum of the eigenvalues of A.