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ECE 515 / ME 540 Fall 2024 Final Exam. Dec. 17, 2024
3 hours; 3 pages of notes 2-sided OK; closed book; no calculators

1. [Problem 1 (16 points)]
Consider the following SISO LTI system:

ẋ =

 3 0 0
−2 −1 2
3 0 1

x+

 1
0
1

u

y =
[
1 0 0

]
x.

(a) Is the system controllable? Justify your answer.

Solution: Controllable because, for example, C =

 1 3 9
0 0 2
1 4 13

 is full rank.

(b) Is the system observable? Justify your answer.

Solution: No because, for example, the observability matrix is O =

 1 0 0
3 0 0
9 0 0

, which
is not full rank. Also, the system is in Kalman observability canonical form (KOCF)
with a two dimensional unobservable part.

(c) Is the system detectable? Justify your answer.

Solution: No, because the system is in KOCF form and the unobservable submatrix

Aō =

[
−1 2
0 1

]
has an unstable eigenvalue 1.

(d) Is the system BIBO stable? Justify your answer.

Solution: No. The system is in KOCF form, it is controllable, and the observable
subsystem matrix Ao = [3] is unstable. A related way to see it is to note that ẋ1 = 3x1+u
so a bounded control such as u = 1 for t ≥ 0 can make x1 unbounded.

2. [Problem 2 (15 points)]

Let A =


1 0 4
1 2 3
1 4 2
1 6 1

 .

(a) What is the dimension of the column span of A?

Solution: Two. The matrix A has rank two as can be readily determined by reducing
to column echelon or row echelon form. Or we could note that the first two columns are
linearly independent by not all three of them are – see part (c).

(b) What is the dimension of the row span of A?

Solution: Two.
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(c) What is the null space of A?

Solution: Solving A

 a
b
c

 = ϑ we find N (A) = span


 8

−1
−2

 .

3. [Problem 3 (10 points)]

Let A =

[
0 5
−5 −8

]
(a) Find the stable subspace for the dynamics ẋ = Ax.

Solution: The characteristic polynomial of A is det(Is − A) = det

[
s −5
5 s+ 8

]
=

s2+8s+25, so the eigenvalues of A are −8±
√
−36

2 = −4±3j. Since both eigenvalues have
negative real parts A is a Hurwitz matrix and the stable subspace is all of R2.

(b) Find constants a and b so that aA2+bA3 = I2×2, where I2×2 is the 2×2 identity matrix.

Solution: By the Cayley-Hamilton theorem A2 + 8A + 25I = 0, so I = − 8
25A − 1

25A
2.

It follows that A = − 8
25A

2 − 1
25A

3. Substituting the second identity into the first one
yields

I = − 8

25

[
− 8

25
A2 − 1

25
A3

]
− 1

25
A2

=
64− 25

625
A2 +

8

625
A3

=
39

625
A2 +

8

625
A3

This can also be solved by brute force. First calculating

A2 =

[
−25 −40
40 39

]
and A3 =

[
200 195
−195 −112

]
.

Then 40a− 195b = 0 and −25a+ 200b = 1. Solving yields the same solution. It is the
Cayley-Hamilton theorem that implies that there is a solution – there are four equations
but only two of them are independent.

4. [Problem 4 (20 points)]
Consider the LTI system and cost function:

ẋ = u x(0) = 0 V (u) =

∫ T

0
u4(τ)dτ + (x(T )− b)4

where b and T are known constants with T > 0. The goal is to find the optimal control by
using the minimum principle with no additional assumptions.

(a) Find the differential equation for the costate p including the boundary condition, and
solve the equation (the solution should depend on x(T ) and b).

Solution: Note that H(x, u, p, t) = u4 + pu and m(x) = (x− b)4. Since −∇xH = 0 and
∇xm(x) = 4(x− b)3 the differential equation for p is

ṗ = 0 p(T ) = 4(x(T )− b)3 so p(t) = 4(x(T )− b)3 for 0 ≤ t ≤ T.
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(b) Express the optimal control u = (u(t))0≤t≤T as a function of the costate p.

Solution: Solving 0 = ∇uH(x, v, p, t) = 4u3+p yields u = −
(p
4

)1/3
. Since p is constant

in time so is the control.

(c) Combine parts (a) and (b) to write the control as a function of b and x(T ).

Solution: Since p
4 = (x(T )− b)3 from (b) we get u = −(x(T )− b) = b−X(T ).

(d) Identify an equation that can be used to solve for x(T ) in terms of b and solve it to find
x(T ) in terms of b and T.

Solution: Since the initial state is 0 and the control u is constant we have x(T ) = Tu
or x(T ) = T (b− x(T )). Solving for x(T ) gives x(T ) = bT

1+T . [Note: This implies that the

optimal control is u = b
1+T and the minimum cost is b4

(1+T )3
.]

5. [Problem 5 (10 points)]

Consider the system model and cost function:

ẋ =

 a 0 0
0 b c
0 d e

x+

 1
0
0

u V (u) =

∫ ∞

0
∥x(t)∥2 + u2(t)dt

where the initial condition, x0, is arbitrary.

(a) What condition on the constants a, b, c, d, e is necessary and sufficient for the optimal
cost, minu V (u), to be finite?

Solution: This is an LQR problem. It is necessary that (A,B) be stabilizable and (A,C)
be detectable, where C = Q = I3×3. The system is in KCCF form so a necessary and

sufficient condition for stabilizability is that the submatrix Ac̄ =

[
b c
d e

]
be Hurwitz.

Since C has rank 3, (A,C) is observable so no other condition is needed.

(b) Assuming the condition in part (a) is true, derive the optimal control in state feedback
form. (It can depend on one or more of the constants a, b, c, d, e.)

Solution: The variable x1 satisfies ẋ1 = ax1 and V (u) = V1(u) + V2,3 where V1(u) =∫∞
0 |x1(t)|2+u2(t)dt and V1,2 =

∫∞
0 x22(t)+x23(t)dt. So the optimal control is the same as

the control that minimizes V1(u) for the dynamics ẋ1 = ax1. The ARE for this subsystem
is 2ap+ 1− p2 = 0 which has solution p =

√
1 + a2 + a, so the optimal control in state

feedback form is u = −
[√

1 + a2 + a
]
x1.

Note: Alternatively we could solve the ARE for the entire third order system. However
we can see that there is a solution with P̄ being block diagonal, with a 1× 1 and a 2× 2
block on the diagonal. If we plug in such a form for P the ARE decouples into one for
each block. The equation for the 1 × 1 block is the same as above. The equation for
the 2 × 2 block is the same as the Lyapyunov stability equation for the uncontrollable
subsystem. Under the stabilizability and observability conditions, we know there is a
unique positive definite solution to the ARE equation, and so the block diagonal solution
must be it.

6. [Problem 6 (12 points)]
Consider the time reversed scalar Ricatti differential equation:

ṗ = 2ap+ q − p2,
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where a and q are constants and q > 0.

(a) Express the nonnegative equilibrium point, pe (also known as p̄) in terms of a and q.

Solution: Setting ṗ = 0 yields pe =
√
a2 + q + a.

(b) Find the linear system dynamics about the equilibrium point and determine if you can
deduce any stability property for pe for the nonlinear dynamics.

Solution: With f(p) = 2ap+ q−p2 we have f ′(pe) = 2a−2pe = −2
√
a2 + q < 0. Thus,

with p = pe + δp, we have ṗ = δ̇p = f(pe + δp) = f(pe) + f ′(pe)δp+ o(δp). Ignoring the
higher order term gives the linear system

δ̇p = −2
(√

a2 + q
)
δp.

Since −2
√

a2 + q < 0 we can conclude that pe is locally asymptotically stable for the
nonlinear dynamics.

(c) Determine whether (0,∞) is a region of asymptotic stability for pe under the nonlinear
dynamics. Justify your answer.

Solution: The graph of f is a downward facing parabola such that f(0) > 0 and f(pe) =
0. Therefore f(p) > 0 for 0 < p < pe and f(p) < 0 for pe < p < ∞. Thus, p is globally
asymptotically stable. [Note: The above observation implies that V (p) = 1

2(p − pe)
2 is

a Lyapunov function. In fact any bowl shaped positive definite function over (0,∞) for
the equilibrium point pe is a Lyapunov function, because d

dtV (p(t)) = V ′(p(t))f(p(t)).]

7. [Problem 7a (8 points)]
The following are unrelated short answer questions. For each provide a justification of your
answer for full credit. (There is a lot of space on this page and the next page but you
don’t need to fill them up! We just didn’t want to leave a blank page on the exam to fit on
gradescope!)

(a) Suppose SISO LTI systems (A,B,C,D) and (Ā, B̄, C̄, D̄) have the same transfer func-
tion. Under what fairly general condition on the two systems can we conclude they are
equivalent up to state space transformation?

Solution: It is sufficient for both systems to be minimal (equivalently, controllable and
observable). Then each would be equivalent to the CCF for their transfer function and
hence to each other under state space transformation.

(b) Suppose we have designed a static state feedback law u = −Kx to stabilize an LTI
system. And suppose we don’t have access to the state but only have access to the
output y = Cx. How might we obtain a stable system using output feedback (possibly
dynamic output feedback)? Under what condition on (A,C) do we expect this to work?

Solution: We could replace u = −Kx by u−Kx̂ where x̂ is produced by an observer:
˙̂x = (A − BK)x̂ + L(y − Cx̂. If (A,C) is detectable we can select L to make A − LC
Hurwitz which will lead to convergence x(t)− x̂(t) → 0. It would be even better if (A,C)
were observable so we could place the poles of L arbitrarily.

8. [Problem 7b (4+5=9 points)]
The following are unrelated short answer questions. For each provide a justification of your
answer for full credit.
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(a) What is an advantage the minimum principle has over the HJB method and what ad-
vantage does the HJB method have over the minimum principle?

Solution: The minimum principle does not require solving a PDE while the more com-
plex HJB method identifies a globally optimal control.

(b) Given an LTI model with matrices A,B,C,D as usual, consider the following three
subspaces:

Σs : the stable subspace

Σc: the controllable subspace

Σō: the unobservable subspace

Which of these subspace(s) is invariant under the system evolution with arbitrary control
inputs? (In other words, for which one(s) of these subspaces do we know that if x(0) is
in the subspace and ẋ = Ax+Bu for all t ≥ 0 then x(t) is in the subspace for all t ≥ 0
for any choice of the control u?)

Solution: Only Σc is invariant under the system dynamics with arbitrary control. Σc

is the range of the controllability matrix C which is invariant under multiplication by A
and hence under multiplication by eAt. It also contains the range of B. Since x(t) is a
linear combination of eAtx(0) and eA(t−τ)u(τ)dτ it is in Σc it if x(t0) is. If B = I for
example then the control can move the state arbitrarily so that neither Σs (determined
by A alone) nor Σō (determined by (A,C) alone) are invariant for arbitrary controls
unless they happen to be the whole of Rn.
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