Problem 1

Suppose we have an LTI system with an input disturbance:

$$
\begin{gathered}
\dot{x}=A x+B(u+w) \\
y=C x
\end{gathered}
$$

If we knew $w(t)$, we could control the system with $u(t)=-w(t)-K \widehat{x}(t)$, where $\widehat{x}(t)$ is our state estimate from some observer.

However, we don't know $w(t)$. Suppose that we know the dynamics of $w(t)$:

$$
\begin{aligned}
& \dot{z}=A_{m} z \\
& w=C_{m} z
\end{aligned}
$$

Thus, we know A_{m}, C_{m}, but not the value of z or w. Let's augment our state-space model as follows:

$$
\begin{gathered}
{\left[\begin{array}{c}
\dot{x} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{cc}
A & B C_{m} \\
0 & A_{m}
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{c}
B \\
0
\end{array}\right] u} \\
y=\left[\begin{array}{ll}
C & 0
\end{array}\right] x
\end{gathered}
$$

- Is the new system controllable?
- Derive a full-state observer for this augmented system. Leave the observer gain as $L=\left[\begin{array}{l}L_{1} \\ L_{2}\end{array}\right]$.
- Use the state estimate from this observer for a control law $u=-C_{m} \widehat{z}-K \widehat{x}$. (Note that our estimate of the unknown noise term w is $C_{m} \widehat{z}$.) Write out the dynamics of the controller and observer, viewing y as the input to this system and u as the output. What are the eigenvalues of these 'controller and observer' dynamics? (Again, leave the controller gain as K.)
- Write out the closed-loop dynamics for the controller, observer, and original system, using the states $(x, z, \widehat{x}, \widehat{z})$.

Problem 2

Suppose we have the same setup as the previous problem, with system dynamics given by

$$
\begin{gathered}
\dot{x}=A x+B(u+w) \\
y=C x
\end{gathered}
$$

and noise dynamics given by

$$
\begin{aligned}
\dot{z} & =A_{m} z \\
w & =C_{m} z
\end{aligned}
$$

Rather than explicitly estimate the unknown state, let's filter the output. Let's add the following states:

$$
\dot{x}_{a}=A_{m}^{\top} x_{a}+C_{m}^{\top} y
$$

- Derive an observer for \widehat{x}, ignoring the w term. Again, leave L in the equations without explicitly calculating these values.
- Stabilize the system with $u=-K_{1} \widehat{x}-K_{2} x_{a}$. Derive the dynamics for your controller and filter (\widehat{x}, x_{a}), viewing y as an input and u as the output.
- What are the eigenvalues of your 'controller and filter' dynamics?

