Problem 1

Let

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ll}
0 & 1 \\
5 & 4
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x=x_{1}
\end{gathered}
$$

- Draw a block diagram representing this system.
- Design a reduced-order Luenberger observer, and draw the block diagram for the system and the observer.

Problem 2

Take any matrix $A \in \mathbb{R}^{m \times n}$. Prove the following statements:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{\top}\right)$
- $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{\top}\right)$

Problem 3

Consider the following dynamics:

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \quad C=\left[\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right]
$$

In this problem, you will be asked to calculate two Kalman decompositions for this system.

- Calculate $\Sigma_{\text {coo }}=\mathcal{R}(\mathcal{C}) \cap \mathcal{N}(\mathcal{O})$
- Calculate a $\Sigma_{c o}$ such that $\Sigma_{c \bar{o}} \oplus \Sigma_{c o}=\mathcal{R}(\mathcal{C})$
- Calculate a $\Sigma_{\bar{c} \bar{o}}$ such that $\Sigma_{c \bar{o}} \oplus \Sigma_{\bar{c} \bar{o}}=\mathcal{N}(\mathcal{O})$
- Calculate a $\Sigma_{\bar{c} o}$ such that $\Sigma_{\bar{c} o} \oplus \Sigma_{c o} \oplus \Sigma_{\bar{c} \bar{o}} \oplus \Sigma_{\bar{c} o}=\mathbb{R}^{n}$
- As we discussed in class, this need not be unique; calculate a different $\Sigma_{c o}, \Sigma_{\bar{c} \bar{o}}$, and $\Sigma_{\overline{c o}}$ for the same system

