Problems:

1. Let $R[x]_{\leq n}$ be the space of polynomials with real coefficients of degree at most n defined on the field of reals \mathbb{R}. Let $\mathcal{A}: R[x]_{\leq n} \rightarrow R[x]_{\leq n}$ be the derivative operator (e.g., $\mathcal{A}\left[2 x^{2}+3 x+1\right]=$ $4 x+3)$.
a) Show that $\left(R[x]_{\leq n}, \mathbb{R}\right)$ is a vector space and $V=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for it.
b) Show that $\mathcal{A}(\cdot)$ is a linear operator, and find the matrix representation of \mathcal{A} in terms of basis V. That is, find a matrix A such that for every $f \in R[x]_{\leq n},[\mathcal{A}(f)]_{V}=A[f]_{V}$, where $[g]_{V} \in \mathbb{R}^{n+1}$ is the representation of g with respect to the basis V.
2. Suppose $\mathcal{A}: \mathcal{X} \rightarrow \mathcal{Y}$ is a linear operator. Show that $\operatorname{dim}(N(\mathcal{A}))+\operatorname{dim}(R(\mathcal{A}))=\operatorname{dim}(\mathcal{X})$. This is known as the rank-nullity theorem.

Hint: Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of $N(\mathcal{A})$. Show that this basis can be extended to a basis for \mathcal{X} by adding additional independent vectors $\left\{v_{k+1}, \ldots, v_{n}\right\}$. Then show $A\left(v_{k+1}\right), \ldots, A\left(v_{n}\right)$ is a basis of $R(\mathcal{A})$.
3. As we discussed in class, every matrix can be put into Jordan form:

$$
A=T\left[\begin{array}{ccc}
J_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & J_{k}
\end{array}\right] T^{-1}
$$

Here, each Jordan block J_{i} has the form:

$$
\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \ldots & 0 \\
0 & \lambda_{i} & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \lambda_{i} & 1 \\
0 & 0 & 0 & 0 & \lambda_{i}
\end{array}\right]
$$

a) Let J be a Jordan block of size n. Show that:

$$
J^{k}=\left[\begin{array}{cccccc}
\binom{k}{0} \lambda^{k} & \binom{k}{1} \lambda^{k-1} & \binom{k}{2} \lambda^{k-2} & \ldots & \cdots & \binom{k}{n-1} \lambda^{k-(n-1)} \\
& \binom{k}{0} \lambda^{k} & \binom{k}{1} \lambda^{k-1} & \cdots & \cdots & \binom{k}{n-2} \lambda^{k-(n-2)} \\
& & \ddots & \ddots & \vdots & \vdots \\
& & & \ddots & \ddots & \vdots \\
& & & & \binom{k}{0} \lambda^{k} & \binom{k}{1} \lambda^{k-1} \\
& & & & & \binom{k}{0} \lambda^{k}
\end{array}\right]
$$

Here, $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, and we use the convention that $\binom{n}{k}=0$ if $n-k<0$.
Hint: You may use a proof by induction, and Pascal's rule may prove useful:

$$
\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n}{k}
$$

b) If the Jordan block J_{i} is of size n, then for any analytic function f :

$$
f\left(J_{i}\right)=\left[\begin{array}{ccccc}
f\left(\lambda_{i}\right) & f^{\prime}\left(\lambda_{i}\right) & \frac{f^{\prime \prime}\left(\lambda_{i}\right)}{2} & \ldots & \frac{f^{(n-1)}\left(\lambda_{i}\right)}{(n-1)!} \\
0 & f\left(\lambda_{i}\right) & f^{\prime}\left(\lambda_{i}\right) & \ldots & \frac{f^{(n-2)}\left(\lambda_{i}\right)}{(n-2)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & f\left(\lambda_{i}\right) & f^{\prime}\left(\lambda_{i}\right) \\
0 & 0 & 0 & 0 & f\left(\lambda_{i}\right)
\end{array}\right]
$$

Use the result from the previous problem to prove this.
Hint: Since f is analytic, we may write $f(s)=\sum_{k=0}^{\infty} \alpha_{k} s^{k}$. Using this, write out $f(J)$, and consider what the entries in $f(J)$ will be.
Note: One consequence of what you just proved is the following:

$$
e^{J_{i} t}=\left[\begin{array}{ccccc}
e^{\lambda_{i} t} & t e^{\lambda_{i} t} & \frac{t^{2}}{2} e^{\lambda_{i} t} & \ldots & \frac{t^{n-1}}{(n-1)!} e^{\lambda_{i} t} \\
0 & e^{\lambda_{i} t} & t e^{\lambda_{i} t} & \ldots & \frac{t^{n-2}}{(n-2)!} e^{\lambda_{i} t} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & e^{\lambda_{i} t} & t e^{\lambda_{i} t} \\
0 & 0 & 0 & 0 & e^{\lambda_{i} t}
\end{array}\right]
$$

Thus, by answering parts (a) and (b), you have shown that:

$$
e^{A t}=T\left[\begin{array}{ccc}
e^{J_{1} t} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & e^{J_{k} t}
\end{array}\right] T^{-1}
$$

4. Suppose that A and Q are $n \times n$ matrices, and consider the matrix differential equation:

$$
\begin{equation*}
\dot{Z}=A Z+Z A^{*} \quad Z(0)=Q \tag{1}
\end{equation*}
$$

a) Show using the product rule that the unique solution to (1) is given by:

$$
Z(t)=e^{A t} Q e^{A^{*} t}
$$

b) Show that if $e^{A t} \rightarrow 0$ as $t \rightarrow \infty$, then

$$
P=\lim _{t_{f} \rightarrow \infty} \int_{0}^{t_{f}} Z(t) d t
$$

is a solution to the Lyapunov equation:

$$
A P+P A^{*}+Q=0
$$

(Hint: Integrate both sides of (1) from 0 to t_{f} and use the fundamental theorem of calculus.)

