Remark: Just a quick reminder that these homeworks are due online on the course's Gradescope. We are not collecting these during class!

Problems:

1. Consider this electrical circuit with time-varying characteristics $R(t), L(t)$ and $C(t)$. Let $q(t)$ denote the charge in capacitor at time t, and $\phi(t)$ be the inductor flux at time t. From physical laws we know:

- Capacitor equation: $q(t)=C(t) V_{C}(t)$.
- Inductor equation: $\phi(t)=L(t) I(t)$.

Use these laws to derive a dynamical model of this circuit which takes the form $\dot{x}=A(t) \stackrel{\mathrm{L}}{x}+B(t) u$.
2. Which of the following are vector spaces over \mathbb{R} (with respect to the standard addition and scalar multiplication)? Justify your answers.
a) The set of real-valued $n \times n$ matrices with nonnegative entries, where n is a given positive integer.
b) The set of rational functions of the form $\frac{p(s)}{q(s)}$, where p and q are polynomials in the complex variable s and the degree of q does not exceed a given fixed positive integer k.
c) The space $L^{2}(\mathbb{R}, \mathbb{R})$ of square-integrable functions, i.e., functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property that $\int_{-\infty}^{\infty} f^{2}(t) d t<\infty$. (Hint: You may use the Cauchy-Schwarz inequality, and note that this inequality applies to any inner product space.)
3. A single-input, single-output linear time-invariant system is described by the transfer function:

$$
G(s)=\frac{s+4}{(s+1)(s+2)(s+3)}
$$

a) Obtain a state-space representation in controllable canonical form.
b) Now obtain one in observable canonical form.
c) Use the partial fraction expansion of $G(s)$ to obtain a representation of this model with a diagonal state matrix A.
4. Let A be the linear operator in the plane corresponding to the counter-clockwise rotation around the origin by some given angle θ. Compute the matrix of A relative to the standard basis in \mathbb{R}^{2}.

