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Final Projects

The final projects in ECE 513 provide you an opportunity to independently study a research
topic of your choice that is related to the course materials. The final projects contribute 30% to
the total grade.

In the end you find a list of suggested papers for the projects. These are only the starting
points. In many cases, further consultation of key papers in the references are required.

A project can align with your current research. In that case, it is important that what you
present for evaluation in ECE 513 is what you do during the course and specifically
for the course. In addition, you need to clarify the scope of and the connection between your
ECE 513 project and your current research.

All projects should contain novel work. For example, it could be applying ECE 513 theoreti-
cal tools to analyze the studied method (or a simplified version of it), implementing two related
methods and providing comparison, applying the studied technique to a new problem, providing
new illustrative examples or test cases to gain more insight of the studied method, or running
simulation on different test data. Final projects will be evaluated based on the level of un-
derstanding, the originality, connection to and application of ECE 513 class materials,
and amount of the presented work.

Your first step in working toward a project is to submit one page proposal that summarize
the research problem and define the scope of the project. Following are the deadlines for the final
projects.

One page proposal (3% grade): March 11.

Oral presentation (7% grade): May 4-6.

Project report (20% grade): May 15.
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