University of Illinois at Urbana-Champaign

Department of Electrical and Computer Engineering

Quiz 2

ECE 412, Fall 2003

You have 3 hours to complete this quiz. By turning in this quiz, you will have attested that you have neither received nor given inappropriate aid on this quiz from any person except the instructor. You may use class notes, textbooks, web resources, computer simulations, and published materials.
NAME:

1. (20 pts.) You are designing a high-performance out-of-order superscalar processor. Your lab partner suggests that instead of using a store buffer you could allow loads to speculatively issue before preceding stores retire. When a load issues it places its address in an associative structure, when a load retires it removes its address from the associative structure. As a store retires the store address is looked up in the associative structure. If the address is found then the store acts like a mispredicted branch: all subsequent instructions in the reorder buffer are cancelled and reexecuted. Explain the circumstances under which this would be a good or bad idea.

2. (20 pts.) You are designing a 2-way out-of-order issue processor. All the stages, including fetch, decode, rename, scoreboard, reg-file, execute and retire are supposed to be able to handle two instructions per 1ns cycle. Unfortunately, you’ve just discovered that the latency of the rename unit is 10% more than you’d like it to be. Your lab partner suggests that you could build a 2 cycle, double-clocked, pipelined rename unit with half the number of ports. Detailed circuit simulations reveal that the resulting pipelined unit will have a latency of 1ns per instruction and a peak throughput of 2 instructions per 1 ns. Is this a good idea? Why or why not? How would your answer change if the issue unit were in-order rather than out-of-order?

3. (20 pts.) Consider the following C code running on two processors of a cache coherent shared memory multiprocessor:

 Processor A:

Processor B:

for (i=0; i < 5; i++)

for (j=0; j < 5; j++)

x++;

x++;

a. Assume x is initialized to 0. What are the possible values x can take after both processors are done? Explain your answer.

b. If the multiprocessor uses the Illinois protocol for cache coherence what is the minimum and maximum number of cache invalidations that occur when the code is run.

4. (20 pts.) You are profiling the newly release SPEC 2004 benchmark suite on your Pentium4 based Linux workstation, and discover that one of the new benchmarks spends 80% of its execution time in a procedure called “sum_array” (shown below):

int sum_array(int *a, int length) {

 int j;

 int sum = 0;

 for (j = 0; j < length; j++) {

 sum += a[j];

 }

 return sum;

}

Your lab partner suggests that the routine could be rewritten to get 4 times better ILP as follows:

int sum_array(int *a, int length) {

 int j;

 int sum0 = 0;

 int sum1 = 0;

 int sum2 = 0;

 int sum3 = 0;

 for (j = 0; (j+3) < length; j+=4) {

 sum0 += a[j];

 sum1 += a[j+1];

 sum2 += a[j+2];

 sum3 += a[j+3];

 }

 while (j < length) {

 sum0 += a[j];

 j++;

 }

 return sum0 + sum1 + sum2 + sum3;

}

Under what circumstances is this idea going to succeed or fail?

5. (20 pts.) You’ve spent all semester building a flow-controlled switched memory interconnect with switches that look like diagram (a) on the next page. Each fifo can hold 4 packets. The system works as follows. There are two processors and two memory modules. The processors make memory read requests that are injected into the interconnect, travel through the interconnect, arrive at the memory module where the indicated address is read from memory and the corresponding data is placed in a “data packet” that travels back through the network to the original requesting processor. Each processor is allowed to have multiple read requests outstanding simultaneously. You find that when the processors and memories are arranged as shown in Diagram (b) on the next page that you often observe system deadlock. If you swap memory module 0 and processor module B as shown in Diagram (c) on the next page you never observe deadlock. Is this just luck or is there a good reason? Explain.

Diagram a (the switch):

Diagram b (the arrangement that deadlocks):

Diagram c (the arrangement that doesn’t seem to deadlock):

Switch d

Switch c

mux

Input

Fifo

Input

fifo

Input

fifo

mux

mux

Switch b

Switch a

Processor B

Memory 1

Memory 0

Processor A

Switch d

Switch c

Switch b

Switch a

Memory 0

Memory 1

Processor B

Processor A

