
Intro to Stochastic Systems (Spring 17) Lectures 25-26

8 Feedback and control

We have defined Markov chains as autonomous stochastic systems whose state at each time t is a
function of the state at time t − 1 and a fresh independent random input. The word “autonomous”
indicates that this random input cannot be manipulated or even directly observed. In this lecture,
we will consider a simple modification of this model that includes an additional external input that
can be manipulated, giving us some ability to steer the state in a desired direction. In particular,
by introducing a feedback connection from the state to this external input, we may control the state
of the Markov chain.
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Figure 1: A controlled Markov chain.

Consider the set-up shown in Figure 1. It depicts a stochastic system whose state Xt evolves
according to the model

Xt+1 = f (Xt ,Ut ,Zt), (8.1)

where, as before, X0 is the initial state, U0,U1, . . . is a sequence of i.i.d. random variables indepen-
dent of X0, and Zt is an additional input at time t. This input, which takes values in some set Z,
may be deterministic or stochastic, where in the latter case it can only depend on Xt

0 = (X0, . . . ,Xt)
and Zt−1

0 = (Z0, . . . ,Zt−1). Any stochastic system described by Eq. (8.1) is called a controlled Markov
chain, and we refer to Zt as the control or action at time t, and we call Z the control space or action
space. To explain the term “controlled Markov chain, ” let us first consider the simplest case: Zt = z,
where z is a fixed deterministic element of the action space Z. That is, the state evolves according
to the rule

Xt+1 = f (Xt ,Ut , z). (8.2)

It is easy to see that this is a time-homogeneous Markov chain. Indeed, fix any t and consider the
joint distribution of Xt

0 (we will assume for simplicity that the state space X is discrete):

P[Xt
0 = xt0] = P[X0 = x0, f (x0,U0, z) = x1, . . . , f (xt−1,Ut−1, z) = xt]

= P[X0 = x0]
t∏

s=1

P[f (xs−1,Us−1, z) = xs],
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where we have used the fact that X0,U0, . . . ,Ut−1 are independent. Now, for any pair x,y ∈ X define
the quantity Mz(x,y) 4= P[f (x,U0, z) = y]. Then we can write

P[Xt
0 = xt0] = P[X0 = x0]

t∏
s=1

Mz(xs−1,xs),

which shows that X = (Xt)t∈Z+
is indeed a time-homogeneous Markov chain with transition prob-

abilities Mz(x,y). Note, however, that the transition probabilities are a function of (or are con-
trolled by) the external input z! In other words, we have a separate transition probability matrix
Mz = (Mz(x,y))x,y∈X for each available control action z ∈ Z. By the same token, we can consider a
time-varying deterministic sequence z = (zt)t∈Z+

and let

Xt+1 = f (Xt ,Ut , zt). (8.3)

In this case, X is a time-inhomogeneous Markov chain with P[Xt+1 = y|Xt = x] = Mzt (x,y):

P[Xt
0 = xt0] = P[X0 = x0]

t∏
s=1

Mzs−1
(xs−1,xs). (8.4)

That is, we can use a time-varying control signal z = (zt)t∈Z to choose a different transition probabil-
ity matrix at every time step t.

The models described by Eqs. (8.2) and (8.3) demonstrate the utility of having an external
control input: we can use it to manipulate the probabilities of state transitions. However, these
models are open-loop: all the control inputs are fixed to some predetermined values ahead of time.
A more flexible architecture is the one where close the loop and allow the control input at time t to
depend on the entire state sequence Xt

0 up to that time and on the past control inputs Zt−1
0 . Thus,

we may consider the following model:

Xt+1 = ft(Xt ,Ut ,Zt) (8.5a)

Zt = gt(X
t
0,Z

t−1
0 ), (8.5b)

where Eq. (8.5a) is the state update, and the sequence of functions g = (gt)t∈Z+
in (8.5b) is called

the feedback control strategy. The strategy g is something that can be designed with particular goals
in mind, and we will investigate this in detail shortly. The joint probability distribution of states
Xt

0 and actions Zt
0 at any time t depends on g, and we will indicate this expicitly by writing Pg [·].

From (8.5), we have

Pg [Xt
0 = xt0,Z

t
0 = zt0] = P[X0 = x0, f (x0,U0, z0) = x1, . . . , f (xt−1,Ut−1, zt−1) = xt]

·1{z0 = g0(x0), z1 = g1(x1
0, z0), . . . , zt = gt(x

t
0, z

t−1
0 )}

= P[X0 = x0]
t∏

s=1

Mzs−1
(xs−1,xs)

t∏
s=0

1{zs = gs(x
s
0, z

s−1
0 )}, (8.6)

where 1{·} takes the value 1 if the statement in the curly braces is true and 0 otherwise. From
Eq. (8.6), it is evident that, for a general g, the state signal X = (Xt)t∈Z+

may not be a Markov chain
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because the action zt that determines the state transition probabilities at time t may depend on
all states up to time t and all actions up to time t −1. However, the state signal will be a Markov
chain if the control action at time t depends only on the state at time t, i.e., if Zt = gt(Xt) for each t.
Indeed, in that case we can deduce the following from Eq. (8.6):

Pg [Xt
0 = xt0] = P[X0 = x0]

t∏
s=1

Mgs−1(xs−1)(xs−1,xs), (8.7)

which is indeed a time-inhomogeneous Markov chain. We refer to any control strategy of the form
Zt = gt(Xt) as a Markov strategy. Compared to the open-loop Markov model of (8.4), where all
the control actions are fixed ahead of time, the closed-loop Markov model of (8.7) allows for the
manipulation of transition probabilties via state feedback. Now we are ready to formulate the
optimal control problem.

8.1 Finite-horizon optimal control problems

To motivate the discussion, consider the following concrete realization of the model in Eq. (8.1).
We take X = U = Z = {0,1}, and consider the update rule of the form

f (x,u,z) 4=

x⊕u, if z = 0

x⊕ 1, if z = 1.
(8.8)

Here, ⊕ denotes the Boolean xor operation. In other words, if the control input z is set to 0, then
f outputs the xor of the current state x with the disturbance input u; if z is set to 1, then f flips
the current state. We assume that the initial state X0 is a Bern(1

2 ) random variable, and that the
disturbance inputs U0,U1, . . . are i.i.d. Bern(p) random variables that are also independent of X0.
Thus, the two possible transition probability matrices corresponding to the control inputs z = 0
and z = 1 are

M0 =
(
M0(0,0) M0(0,1)
M0(1,0) M0(1,1)

)
=

(
1− p p
p 1− p

)
and M1 =

(
M1(0,0) M1(0,1)
M1(1,0) M1(1,1)

)
=

(
0 1
1 0

)
. (8.9)

Now suppose that we want the first four states X0,X1,X2,X3 to track the pattern 0,1,0,1 by issuing
an appropriate sequence of control actions Z0,Z1,Z2,Z3. We incur a unit cost every time the actual
state differs from the prescribed value (i.e., when X0 = 1, X2 = 0, X3 = 1, or X4 = 0) and also every
time the control action is set to 1. Otherwise, we incur no cost. Thus, if we define four state-action
cost functions

c0(x0, z0) = 1{x0 = 1}+1{z0 = 1} (8.10a)

c1(x1, z1) = 1{x1 = 0}+1{z1 = 1} (8.10b)

c2(x2, z2) = 1{x2 = 1}+1{z2 = 1} (8.10c)

c3(x3, z3) = 1{x3 = 0}+1{z3 = 1}. (8.10d)
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For any control strategy g = (g0, g1, g2, g3), we can compute its expected cost

J(g) = J(g0, g1, g2, g3) = Eg

 3∑
t=0

ct(Xt ,Zt)

 ,
where the control input at time t is given by Zt = gt(X

t
0,Z

t−1
0 ). The optimal control problem is to find

a control strategy g∗ = (g∗0, g
∗
1, g
∗
2, g
∗
3), such that

J(g∗) = min
g

J(g),

where the minimum on the right-hand side is over all valid control strategies g = (g0, g1, g2, g3), i.e.,
those under which the control action Zt at time t is a function only of Xt

0 and Zt−1
0 . We call the

integer T = 4 the horizon of the problem, and we say that any control strategy g = (g0, . . . , g3) is a
4-step strategy.

This is an instance of a finite-horizon optimal control problem: Given a controlled Markov chain
with controlled transition probabilities Mz(x,y), a positive integer T , and a sequence of state-action
cost functions ct : X× Z→ R, for t ∈ {0,1, . . . ,T − 1}, we seek a T -step control strategy g∗ = (g∗0, . . . , g

∗
T ),

such that

J(g∗) = J(g∗0, . . . , g
∗
T−1) = min

g
J(g), (8.11)

where the expected cost of any T -step strategy g is defined as

J(g) = Eg

T−1∑
t=0

ct(Xt ,Zt)

 ,
with Zt = gt(X

t
0,Z

t−1
0 ) for every t.

On the face of it, finding such a g∗ is a messy affair, especially when the horizon T is large —
at each time t, the control action Zt may depend on the entire state history Xt

0 as well as on all of
past actions Zt−1

0 . The complexity of finding the best gt quickly gets out of hand already in the
binary case, when X = Z = {0,1}. Indeed, at time t, there are two options for the control action for
each possible realization of (Xt

0,Z
t−1
0 ), and there are 2t+1 × 2t = 22t+1 possible realizations. Thus,

the number of possibilities grows exponentially with time!
Fortunately, as we will see next, because the cost at each time t depends only on the current

state Xt and the current action Zt, and because the state update rule is Markov, there is no loss
of optimality if we restrict our consideration only to Markov control strategies. That is, for any
candidate control strategy g, we can always find a Markov control strategy g+ that will perform
at least as well, in the sense that J(g+) ≤ J(g). This entails huge savings in complexity, both when
finding the optimal strategy and when implementing. Moreover, armed with this result, we will
prove that the optimal strategy can be constructed via an explicit recursive scheme called dynamic
programming.
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8.2 Blackwell’s principle of irrelevant information and optimality of Markov strate-
gies

The proof of optimality of Markov strategies is a deep consequence of the so-called principle of
irrelevant information, which was derived in 1964 by David Blackwell.1 While the result is very
general and applies to continuous state and action spaces, it is very simple to state in the finite case:

Let X and Y be two jointly distributed random variables taking values in finite spaces X
and Y. Let Z be a finite action space. Consider a real-valued cost function c(x,z) of x ∈ X
and z ∈ Z. Then, for any strategy Z = g(X,Y ) we can always find a strategy Z = g∗(X)
that uses only X, such that

E[c(X,g∗(X))] ≤ E[c(X,g(X,Y ))].

The construction of g∗ is painfully obvious: just take

g∗(x) = argmin
z∈Z

c(x,z).

Then c(x,g(x,y)) ≥ c(x,g∗(x)) by definition, for any pair x,y, and we are done. (Blackwell’s result
applies more generally when the sets X, Y, and Z are continuous, and when the strategies are ran-
domized, but the construction of g∗ in such cases is much less straightforward.) The interpretation
here is as follows: we get observe a state variable X and some additional information Y correlated
with X, and then get to choose an action Z on the basis of X and Y . However, because the cost
c(X,Z) directly depends only on the state X and the action Z, the additional piece of information
Y is irrelevant, and we can always do without it.

We will now use Blackwell’s principe to prove optimality of Markov strategies for an arbitrary
horizon T . We will first prove this optimality statement for T = 1,2,3 and then derive the general
case. For T = 1, there is nothing to prove since Z0 = g0(X0), and the strategy is already Markov. For
T = 2, consider an arbitrary strategy g = (g0, g1) with Z0 = g0(X0) and Z1 = g1(X0,X1,Z0). Then the
expected cost is

J(g0, g1) = Eg [c0(X0,Z0) + c1(X1,Z1)]

= Eg [c0(X0,Z0)] +Eg [c1(X1,Z1)]. (8.12)

We will show that we can replace g1 with another function g∗1 that depends only on X1 and achieves
smaller expected cost: J(g0, g

∗
1) ≤ J(g0, g1). Since the first term in (8.12) depends only on g0, we

focus on the second term

Eg [c1(X1,Z1)] = E[c1(X1, g1(X0,X1,Z0))].

Applying Blackwell’s principle to X = X1, Y = (X0,Z0), and c = c1, we see that we can replace
g1(X0,X1,Z0) with g∗1(X1) = argminz∈Z c1(X1, z) to get

E[c1(X1, g
∗
1(X1))] ≤ E[c1(X1, g1(X0,X1, g0(X0)))], (8.13)

1D.P. Blackwell, “Memoryless strategies in finite-stage dynamic programming," Annals of Mathematical Statistics,
vol. 35, no. 2, pp. 863–865, 1964. The term “Blackwell’s principle of irrelevant information" was coined by Peter Whittle.
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and therefore J(g0, g
∗
1) ≤ J(g0, g1), as claimed. Now we consider the case of T = 3. Consider a strategy

g = (g0, g1, g2), where g2 is Markov, i.e., Z2 = g2(X2) and g1 is arbitrary, i.e., Z1 = g1(X0,X1,Z0). We
will show that we can replace g1 with a Markov strategy g∗1 and guarantee smaller expected cost:
J(g0, g

∗
1, g2) ≤ J(g0, g1, g2). The expected cost of g is

J(g0, g1, g2) = Eg [c0(X0,Z0) + c1(X1,Z1) + c2(X2,Z2)]

= Eg [c0(X0,Z0)] +Eg [c1(X1,Z1) + c2(X2,Z2)]. (8.14)

Again, the first term in (8.14) involves only g0, so we can focus on the second and on the third
terms only. The second term involves g1, but, since X2 = f (X1,U1,Z1) and Z1 is determined by g1,
the choice of g1 affects both the second and the third terms. Let us look at these terms more closely:

Eg [c1(X1,Z1) + c2(X2,Z2)]

=
∑
x2

0 ,z
2
0

Pg [X2
0 = x2

0,Z
2
0 = z2

0] {c1(x1, z1) + c2(x2, z2)}

=
∑
x2,z2

0

P[X0 = x0]Mz0
(x0,x1)Mz1

(x1,x2)

1{z0 = g0(x0)}1{z1 = g1(x1
0, z0)}1{z2 = g2(x2)} · {c1(x1, z1) + c2(x2, z2)}

=
∑
x1

0 ,z
1
0

P[X0 = x0]Mz0
(x0,x1)1{z0 = g0(x0)}1{z1 = g1(x1

0, z0)}

·
∑
x2,z2

Mz1
(x1,x2)1{z2 = g2(x2)} · {c1(x1, z1) + c2(x2, z2)} . (8.15)

Now, if we take a close look at the second summation in (8.15), we see that it is a function of x1 and
z1 only, since x2 and z2 are marginalized away. Moreover, it does not depend on g1. With that in
mind, if we define

c̃(x1, z1) 4=
∑
x2,z2

Mz1
(x1,x2)1{z2 = g2(x2)} · {c1(x1, z1) + c2(x2, z2)}

≡
∑
x2

Mz1
(x1,x2) {c1(x1, z1) + c2(x2, g2(x2))} ,

then we can write

Eg [c1(X1,Z1) + c2(X2,Z2)] = E[c̃(X1, g1(X0,X1, g0(X0)))].

Applying the Blackwell principle to X = X1, Y = X0, and c = c̃, we see that we can replace
g1(X0,X1,Z0) with g∗1(X1) = argminz∈Z c̃(X1, z), such that the new strategy g∗ = (g0, g

∗
1, g2) satisfies

Eg∗[c1(X1,Z1) + c2(X2,Z2)] ≤ Eg [c1(X1,Z1) + c2(X2,Z2)].

This shows that J(g0, g
∗
1, g2) ≤ J(g0, g1, g2), as claimed.
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With these two results in hand, we can prove optimality of Markov strategies for finite-horizon
optimal control problems. Given the horizon T > 3 and a sequence of one-stage state-action costs
c0, . . . , cT−1, consider an arbitrary control strategy g = (g0, . . . , gT−1) with the expected cost

J(g) = J(g0, . . . , gT−1) = Eg

T−1∑
t=0

ct(Xt ,Zt)

 .
We will now prove that there exists a Markov control strategy g∗ = (g∗0, . . . , g

∗
T−1), such that J(g∗) ≤

J(g). Since g is arbitrary, this implies that we can optimize only over Markov policies, which yields
tremendous savings in implementation complexity — at each time t, we only need to feed back the
most recent state Xt, and there is no need to store the entire history Xt

0,Z
t−1
0 .

Now for the proof. Let us rewrite the expected cost J(g) as

J(g) = Eg

T−2∑
t=0

ct(Xt ,Zt)

+Eg [cT−1(XT−1,ZT−1)].

Here, the first term is not affected by the choice of gT−1, while the second term will be affected
by the entire g. If we think of the state tuple XT−2

0 as a “superstate” X̃0 and of the action tuple
ZT−2

0 as a “superaction” Z̃0 and let X̃1 = XT−1, Z̃1 = ZT−1, then, by the previously proved result
for T = 2, we can replace gT−1(XT−1

0 ,ZT−2
0 ) ≡ gT−1(X̃0, X̃1, Z̃0) with g∗T−1(X̃1) ≡ g∗T−1(XT−1), while

guaranteeing that J(g0, . . . , gT−2, g
∗
T−1) ≤ J(g0, . . . , gT−2, gT−1). Thus, if we assume that the last action

ZT−1 depends only on the state XT−1, we can only reduce the expected cost. With that in mind,
consider an arbitrary strategy g = (g0, . . . , gT−2, gT−1), where gT−1 is a function acting on XT−1 only,
while all others are not restricted in such a way. Now let us rewrite the expected cost J(g) as

J(g) = Eg

T−3∑
t=0

ct(Xt ,Zt)

+Eg [cT−2(XT−2,ZT−2)] +Eg [cT−1(XT−1,ZT−1)].

The first term is not affected by the choice of gT−2 and gT−1, while the second and the third
terms are. Thus, we can lump the state tuple XT−3

0 into a “superstate” X̃0, the action tuple
ZT−3

0 into a “superaction" Z̃0, and take X̃1 = XT−2, Z̃1 = ZT−2, X̃2 = XT−1, and Z̃2 = ZT−1. Since
ZT−1 = gT−1(XT−1), we see that Z̃2 is a function of X̃2 only, so we can apply the previously proved
result for the T = 3 case and replace gT−2(XT−2

0 ,ZT−3
0 ) = gT−2(X̃1

0 , Z̃0) with g∗T−2(X̃1) ≡ g∗T−2(XT−3
0 )

with J(g0, . . . , g
∗
T−2, gT−1) ≤ J(g0, . . . , gT−2, gT−1). Repeating these two operations until we reach the

beginning (T = 1), we can replace the entire strategy g by a Markov strategy g∗, while reducing the
expected cost.

Thus, we have proved a very important result: When looking for an optimal control strategy
for a finite-horizon control problem of the type (8.11), we can limit the search to Markov strategies
only. However, it doesn’t tell us how to find such an optimal strategy. We take this up next.

8.3 Dynamic programming

Now that we have proved that there is no loss of optimality in restricting the optimization in (8.11)
to Markov strategies, we will use this result to derive a general recursive procedure for actually
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finding the optimal strategy. This procedure, which goes by the name of dynamic programming,
works by breaking the multistage optimal control problem into smaller one-stage control problems.
Dynamic programming was invented in the 1940’s and then refined in the 1950’s by Richard
Bellman.2

We start by breaking the problem into the first T − 1 stages and the final stage:

min
g

J(g) = min
gT−2

0

min
gT−1

J(gT−2
0 , gT−1)

= min
gT−2

0

min
gT−1

E

T−1∑
t=0

ct(Xt , gt(Xt))


= min

gT−2
0

min
gT−1

E
T−2∑
t=0

ct(Xt , gt(Xt))

+E [cT−1(XT−1, gT−1(XT−1))]

 . (8.16)

Now notice the following: if we fix g0, . . . , gT−2 and vary gT−1, then this will affect only the second
expectation in (8.16). That is, we can move the minimization over gT−1 to that second term:

min
gT−2

0

min
gT−1

E
T−2∑
t=0

ct(Xt , gt(Xt))

+E [cT−1(XT−1, gT−1(XT−1))]


= min

gT−2
0

E
T−2∑
t=0

ct(Xt , gt(Xt))

+ min
gT−1

E [cT−1(XT−1, gT−1(XT−1))]

 .
Now, if we consider

g∗T−1(XT−1) = argmin
z∈Z

c(XT−1, z),

2The origin of the name “dynamic programming" is very curious. Here is how Bellman recalls it in his 1984
autobiography Eye of the Hurricane:

"I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision
processes. An interesting question is, Where did the name, dynamic programming, come from? The 1950s
were not good years for mathematical research. We had a very interesting gentleman in Washington named
Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word
research. I’m not using the term lightly; I’m using it precisely. His face would suffuse, he would turn red,
and he would get violent if people used the term research in his presence. You can imagine how he felt,
then, about the term mathematical. The RAND Corporation was employed by the Air Force, and the Air
Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air
Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what
name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But
planning, is not a good word for various reasons. I decided therefore to use the word “programming”. I
wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. I thought,
let’s kill two birds with one stone. Let’s take a word that has an absolutely precise meaning, namely
dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that
it’s impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that
will possibly give it a pejorative meaning. It’s impossible. Thus, I thought dynamic programming was a
good name. It was something not even a Congressman could object to. So I used it as an umbrella for my
activities."
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then, for any gT−1,

E [cT−1(XT−1, gT−1(XT−1))] ≥ E
[
min
z∈Z

cT−1(Xt−1, z)
]

= E[cT−1(XT−1, g
∗
T−1(XT−1))].

Thus, regardless of how we got to the last stage T , the optimal action at that stage is given by
g∗T−1(XT−1), and therefore

min
g

J(g) = min
gT−2

0

J(gT−2
0 , g∗T−1)

= min
gT−2

0

E

T−2∑
t=0

ct(Xt , gt(Xt)) + min
z∈Z

cT−1(XT−1, z)

 .
Now we need to optimize gT−2. Observe, however, that we cannot simply take

g∗T−2(XT−2) = argmin
z∈Z

cT−2(XT−2, z),

because the action ZT−2 will affect the future state via the update rule XT−1 = f (XT−2,UT−2,ZT−2).
Thus, we need to choose g∗T−2 to balance the current expected cost E[cT−2(XT−2,ZT−2)] and the
future expected cost E[cT−1(XT−1,ZT−1)]. To that end, let us split off the t = T − 2 term and write

min
gT−2

0

J(gT−2
0 , g∗T−1)

= min
gT−2

0

E

T−2∑
t=0

ct(Xt , gt(Xt)) + min
z∈Z

cT−1(XT−1, z)


= min

gT−2
0

E

T−3∑
t=0

ct(Xt , gt(Xt)) + cT−2(XT−2, gT−2(XT−2)) + min
z∈Z

cT−1(XT−1, z)


= min

gT−2
0

E

T−3∑
t=0

ct(Xt , gt(Xt)) + cT−2(XT−2, gT−2(XT−2)) + min
z∈Z

cT−1(f (XT−2,UT−2, gT−2(XT−2)), z)


= min

gT−3
0

E
T−3∑
t=0

ct(Xt , gt(Xt))

+ min
gT−2

E
[
cT−2(XT−2, gT−2(XT−2)) + min

z∈Z
cT−1(f (XT−2,UT−2, gT−2(XT−2)), z)

] .
This looks formidable, but if we define

VT−1(x) 4= min
z∈Z

cT−1(x,z), (8.17)

then, using the fact that XT−1 = f (XT−2,UT−2,ZT−2), we can write

min
gT−2

0

J(gT−2
0 , g∗T−1)

= min
gT−3

0

E
T−3∑
t=0

ct(Xt , gt(Xt))

+ min
gT−2

E [cT−2(XT−2, gT−2(XT−2)) +VT−1(f (XT−2,UT−2, gT−2(XT−2)))]

 .
9
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Let us define the function

VT−2(x) 4= min
z∈Z

{
cT−2(x,z) +E[VT−1(f (x,UT−2, z))]

}
, (8.18)

where the expectation is only with respect to the random disturbance UT−2. Then, using the fact
that XT−2 and UT−2 are independent, we can write

min
gT−2

E
[
cT−2(XT−2, gT−2(XT−2)) +VT−1(f (XT−2,UT−2, gT−2(XT−2)))

]
= min

gT−2

∑
x

Pg [XT−2 = x]
{
cT−2(x,gT−2(x)) +E

[
VT−1(f (x,UT−2, gT−2(x)))

]}
=

∑
x

Pg [XT−2 = x]min
z∈Z

{
cT−2(x,z) +E[VT−1(f (x,UT−2, z))]

}
=

∑
x

Pg [XT−2 = x]VT−2(x)

= E[VT−2(XT−2)]. (8.19)

This derivation requires some explanation. The first equality is a consequence of the fact that XT−2
and UT−2 are independent; thus, the expected value of any function h(XT−2,UT−2) can be evaluated
by first computing the expectation with respect to UT−2 only for every fixed value of XT−2 and
then doing the expectation with respect to XT−2. That is (assuming, for simplicity, that UT−2 is also
discrete), we can write

E[h(XT−2,UT−2)] =
∑
x,u

P[XT−2 = x,UT−2 = u]h(x,u)

=
∑
x

P[XT−2 = x]
∑
u

P[UT−2 = x]h(x,u)

=
∑
x

P[XT−2 = x]E[h(x,UT−2)],

and the same reasoning applies if UT−2 is continuous-valued and has a pdf. Note that E[h(x,UT−2)]
is a function of x. The next line is a consequence of the identity

min
g

E[H(X,g(X))] = E[min
z∈Z

H(X,z)],

where the minimization on the left-hand side is over functions g : X→ Z, while in the right-hand
side we pull the minimization inside the expectation, but now choose the best z for every x. The
remaining lines follow from the definition of VT−2 in (8.18). Now, (8.19) tells us that the optimal
strategy at time T − 2 is given by

g∗T−2(xT−2) = argmin
z∈Z

{cT−2(xT−2, z) +E[VT−1(f (xT−2,UT−2, z))]} .

10
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Continuing in this manner, we see that, if we start with VT−1 defined in Eq. (8.17) and recursively
define the functions

VT−k(x) 4= min
z∈Z

{
cT−k(x,z) +E[VT−k+1(f (x,UT−k+1, z))]

}
, (8.20)

for k = 2, . . . ,T , then the optimal action at time T − k is given by

g∗T−k(x) = argmin
z∈Z

{
cT−k(x,z) +E[VT−k+1(f (x,UT−k , z))]

}
, (8.21)

and that the minimum expected cost is given by

min
g

J(g) = E[V0(X0)].

We have thus shown how to compute the optimal Markov strategy via dynamic programming. Note
the following intuitive interpretation of Eqs. (8.20) and (8.21): if the state at time T − k is equal to
x, then the best action at that time is the one that minimizes the sum of the current cost cT−k(x,z)
and the expected future cost (or the cost-to-go) E[VT−k+1(f (x,UT−k , z))] starting from XT−k = x. Note
also that the cost-to-go functions V0,V1,V2, . . . ,VT−1 are computed via a backward pass: we first
determine VT−1, then use it to compute VT−2, and all the day down to V0. Once the cost-to-go
functions are available, we compute the optimal strategy via a forward pass.

Note, by the way, that we can express the cost-to-go functions in terms of the controlled
transition matrices Mz as follows: for each k ∈ {1,2, . . . ,T − 1}, we have

VT−k(x) 4= min
z∈Z

{
cT−k(x,z) +

∑
y∈X

Mz(x,y)VT−k+1(y)
}

(8.22)

(exercise: prove this!).
As an illustration, let us use dynamic programming to construct the optimal strategy for the

example of Section 8.1. This is an optimal control problem with horizon T = 4, where the controlled
transition matrices are given by (8.9) and the state-action costs are given by (8.10). We start by
computing V3(x) and g∗3:

V3(x) = min
z∈{0,1}

c3(x,z)

= min
z∈{0,1}

(
1{x = 0}+1{z = 1}

)
= min

(
1{x = 0},1{x = 0}+ 1

)
= 1{x = 0},

and so the optimal action at t = 3 is g∗3(x) = 0, regardless of the realized state. Now we compute

11
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V2(x) and g∗2. Using (8.22), we can write

V2(x) = min
z∈{0,1}

{
c2(x,z) +Mz(x,0)V3(0) +Mz(x,1)V3(1)

}
= min

z∈{0,1}

{
1{x = 1}+1{z = 1}+Mz(x,0)

}
= min

(
1{x = 1}+M0(x,0),1{x = 1}+ 1 +M1(x,0)

)
.

In particular,

V2(0) = min
(
1− p,1

)
= 1− p =⇒ g∗2(0) = 0

V2(1) = min
(
1 + p,3

)
= 1 + p =⇒ g∗2(1) = 0,

so the optimal action at time t = 2 is g∗2(x) = 0, regardless of the state. We proceed to V1 and g∗1:

V1(x) = min
z∈{0,1}

{
c1(x,z) +Mz(x,0)V2(0) +Mz(x,1)V2(1)

}
= min

z∈{0,1}

{
1{x = 0}+1{z = 1}+ (1− p)Mz(x,0) + (1 + p)Mz(x,1)

}
= min

(
1{x = 0}+ (1− p)M0(x,0) + (1 + p)M0(x,1),1{x = 0}+ 1 + (1− p)M1(x,0) + (1 + p)M1(x,1)

)
.

In particular,

V1(0) = min
(
2p2 − p+ 2,p+ 3

)
= 2p2 − p+ 2 =⇒ g∗1(0) = 0

V1(1) = min
(
1− p,2− p

)
= 1− p =⇒ g∗1(1) = 0

And finally, we compute V0 and g∗0:

V0(x) = min
z∈{0,1}

{
c0(x,z) +Mz(x,0)V1(0) +Mz(x,1)V1(1)

}
= min

z∈{0,1}

{
1{x = 1}+1{z = 1}+ (2p2 − p+ 2)Mz(x,0) + (1− p)Mz(x,1)

}
,

so that

V0(0) = min
(
(2p2 + 2)(1− p),2− p

)
= (2p2 + 2)(1− p) =⇒ g∗0(0) = 0

V0(1) = min
(
1 + (2p2 − p+ 2)p+ (1− p)2,4− p+ 2p2

)
= 1 + (2p2 − p+ 2)p+ (1− p)2 =⇒ g∗0(1) = 0.

Thus, the open-loop strategy g∗0(x) = g∗1(x) = g∗2(x) = g∗3(x) = 0 is optimal, giving the expected cost

E[V0(X0)] =
(2p2 + 2)(1− p)

2
+

1 + (2p2 − p+ 2)p+ (1− p)2

2
= p2 − p+ 2

(recall that X0 ∼ Bern(1
2 )).

Last version: May 3, 2017
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