
Intro to Stochastic Systems (Spring 17) Lectures 22-24

7 Randomness and determinism

Recall the definition of the random walk: it is a discrete-time stochastic signal X = (Xt)t∈Z+
with

the deterministic initial condition X0 = 0 and the update rule

Xt+1 = Xt +Ut , t = 0,1,2, . . .

where U = (Ut)t∈Z is an i.i.d. stochastic signal. Let µ = E[U0] and σ2 = Var[U0]. Then

E[Xt] = E[U0 + . . .+Ut−1] = tµ

and

Var[Xt] = Var[U0 + . . .+Ut−1] =
t−1∑
s=0

Var[Us] = tσ2,

where we have used the fact that U0, . . . ,Ut−1 are independent. Thus, both the mean and the
variance of Xt grow linearly with t, which means that, if µ , 0, then the random walk will drift
farther and farther away from the origin as time goes by: at time t, with high probability it will
be somewhere in the interval [tµ −

√
tσ , tµ+

√
tσ ]. If the increments of the walk are zero-mean,

then the walk will stay near the origin on average, but will take longer and longer excursions as t
increases. Therefore, we are justified in saying that the amount of randomness in Xt increases with
t — as t→∞, the value of Xt will become less and less predictable.

On the other hand, consider the average displacement of the random walk at time t:

Xt
4=
Xt
t

=
U0 + . . .+Ut−1

t
.

Then E[Xt] = 1
t E[Xt] = µ and Var[Xt] = 1

t2 Var[Xt] = σ2

t . We notice two things:

1. The expected average displacement is constant and equal to µ, which makes sense: µ is the
average displacement per time step.

2. The variance of the expected average displacement decays as 1
t .

Therefore, if we observe the random walk for a long enough time, then we will see that it will tend
to spend a great deal of time around the point x = µ. In fact, as we will make precise later, as t→∞,
the average displacement Xt will be in the interval [µ− σ√

t
,µ+ σ√

t
] with overwhelming probability.

This suggests that the operation of averaging has the effect of reducing the fluctuations around the
mean, and in fact drives them to zero as t→∞. It is convenient to subtract off the mean µ and to
focus on the random variables

St
4= Xt −µ =

U0 + . . .+Ut−1

t
−µ.

Then E[St] = 0 and Var[St] = σ2

t . Since any random variable with zero variance is deterministic
and equal to its mean, we see that, in the limit as t →∞, the random variables St will become
deterministic: St→ 0. This is the Law of Large Numbers (LLN).
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Now, if we want to take a better look at the fluctuations of St around zero, we should scale St in
such a way that the variance of the scaled quantity remains constant as t increases. Since St = Xt−tµ

t ,
we see that multiplying St by

√
t will have the desired effect:

Var[
√
tSt] = tVar[St] = t · σ

2

t
= σ2.

With this in mind, let us define

Zt
4=

√
tSt
σ

=
U0 + . . .+Ut−1 − tµ√

tσ2
.

Then E[Zt] = 0 and Var[Zt] = t
σ2 Var[St] = 1. This scaling helps us “zoom in” on the flucutations of

St around 0. As we will see shortly, at this scale the flucutations are Gaussian, with zero mean and
unit variance. That is, as t→∞, the distribution of Zt will approach N (0,1). This is the Central
Limit Theorem (CLT).

7.1 The LLN, the CLT, and stability of linear systems

Before proving the LLN and the CLT, it is instructive to look at these results through the lens of
linear systems. We have two stochastic signals, S = (St)t∈N and Z = (Zt)t∈N, that are given by linear
transformations of the i.i.d. stochastic signal U . In particular,

St+1 =
U0 + . . .+Ut

t + 1
−µ

=
U0 + . . .+Ut−1

t + 1
+
Ut
t + 1

−µ

=
t(St +µ)
t + 1

+
Ut
t + 1

−µ

=
t

t + 1
St +

Ut −µ
t + 1

.

Introducing the centered version of Ut, Vt
4=Ut −µ, we can write so we can write

St+1 = ft(St ,Vt), where ft(s,v) 4=
t

t + 1
s+

v
t + 1

. (7.1)

Similarly,

Zt+1 =

√
t + 1
σ

St+1

=

√
t + 1
σ

( t
t + 1

St +
Ut −µ
t + 1

)
=

√
t + 1
σ

(
t

t + 1
σZt√
t

+
Ut −µ
t + 1

)
=

√
t

t + 1
Zt +

Ut −µ
σ
√
t + 1

,
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which allows us to write

Zt+1 = gt(Zt ,Vt), where gt(z,u) 4=

√
t

t + 1
z+

v

σ
√
t + 1

. (7.2)

Noting that Vt is independent of St and Zt, we see from (7.1) and (7.2) that both S and Z are
discrete-time, continuous-state, time-inhomogeneous Markov chains, that St+1 is a linear function
of St and Vt, and that Zt+1 is a linear function of Zt and Vt. Moreover, note that ft(0,0) = gt(0,0) = 0,
so we can think about s = 0 and z = 0 as “equilibrium points” of these two time-varying linear
systems. We can now restate the LLN and the CLT as follows:

1. As t→∞, St will converge to the equilibrium point s = 0.

2. As t→∞, the distribution of the fluctuations of Zt around the equilibrium point z = 0 will
approach that of a zero-mean, unit-variance Gaussian random variable.

7.2 Proving the LLN and the CLT

We now sketch the proofs of the LLN and the CLT by characterizing the limiting behavior of the
probability distributions of St and Zt. To that end, we will look at their characteristic functions.
Our goal is to show that

lim
t→∞

ΦSt (u) = 1 (7.3)

and

lim
t→∞

ΦZt (u) = e−u
2/2. (7.4)

That is, as t →∞, the characteristic functions of St will converge to the characteristic function
of the deterministic random variable taking the value 0, while those of Zt will converge to the
characteristic function of a N (0,1) random variable. Since the distribution of a random variable
is uniquely determined by its characteristic function, Eq. (7.3) gives the Law of Large Numbers,
while Eq. (7.4) gives the Central Limit Theorem.

We will first express everything in terms of the characterisitc function Φ(u) = E[eiuU0] of U0.
Using the fact that the Ut’s are i.i.d., we have

ΦSt (u) = E[eiuSt ]

= E
[
exp

{
iu

(U0 + . . .+Ut−1

t
−µ

)}]
= e−iuµE

[
exp

( iu
t
U0 + . . .+

iu
t
Ut−1

)]
= e−iuµE[ei(u/t)U0 . . . ei(u/t)Ut−1]

= e−iuµE[ei(u/t)U0] . . .E[ei(u/t)Ut−1]

= e−iuµ
(
Φ

(u
t

))t
(7.5)
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and

ΦZt (u) = E[eiu
√
tSt/σ ]

= ΦSt

(
u
√
t

σ

)
= e−iu

√
t/σ

(
Φ

(
u
√
tσ

))t
. (7.6)

Now we will investigate the limits as t→∞. To that end, we will use first- and second-order Taylor
approximations of the characteristic function Φ(u) around u = 0. Recall that the first-order Taylor
approximation of a differentiable function f around the point u = 0 is given by

f (u) = f (0) + f ′(0)u +R1(u),

where the remainder term R1(u) has the property that limu→0
R1(u)
u = 0. Similarly, the second-order

Taylor approximation of a twice-differentiable function f around u = 0 is given by

f (u) = f (0) + f ′(0)u +
1
2
f ′′(0)u2 +R2(u),

where the remainder R2(u) is such that limu→0
R1(u)
u2 = 0. In the special case of f being the

characteristic function of some random variable Z, i.e., f (u) = E[eiuZ ], we have

f (0) = E[eiuZ ]
∣∣∣∣
u=0

= 1,

and the first two derivatives at u = 0 are

f ′(0) =
d

du
E[eiuZ ]

∣∣∣∣
u=0

= iE[ZeiuZ ]
∣∣∣∣
u=0

= iE[Z]

and

f ′′(0) = i
d

du
E[ZeiuZ ]

∣∣∣∣
u=0

= −E[Z2] = E[Z]2 −Var[Z].

Now let us examine the term involving Φ in Eq. (7.5). Using the first-order Taylor approximation
of Φ(u/t) around 0, we have (

Φ

(u
t

))t
=

(
Φ(0) +Φ ′(0)

u
t

+R1

(u
t

))t
=

(
1 +

iuµ
t

+R1

(u
t

))t
=

(
1 +

1
t

(iuµ+ ξt)
)t
,

4



Intro to Stochastic Systems (Spring 17) Lectures 22-24

where we have defined ξt
4= tR1(u/t). Since R1 is the remainder term in the first-order Taylor

approximation, we have limt→∞ξt = 0 (recall that u is fixed). Now we will use the following result:
If (at)t∈N is any sequence of complex numbers, such that the limit a = limt→∞ at exists, then

lim
t→∞

(
1 +

at
t

)t
= ea. (7.7)

Applying (7.7) to the sequence at = iuµ+ ξt, we get

lim
t→∞

(
1 +

1
t

(iuµ+ ξt)
)t

= eiuµ,

and therefore

lim
t→∞

ΦSt (u) = e−iuµ lim
t→∞

(
Φ

(u
t

))t
= e−iuµeiuµ = 1.

Next, we turn to (7.6). Writing

Φ(u) = E[eiuU0] = E[eiu(V0+µ)] = eiuµΨ (u),

where Ψ (u) 4= E[eiuV0] is the characteristic function of V0 =U0 −µ, we can express the right-hand
side of (7.6) as

e−iu
√
t/σ

(
Φ

(
u
√
tσ

))t
= e−iu

√
t/σ

(
eiu/
√
tσΨ

(
u
√
tσ

))t
=

(
Ψ

(
u
√
tσ

))t
.

Using the second-order Taylor approximation of Ψ (u/
√
tσ ) at 0 in the above expression, we have(

Ψ

(
u
√
tσ

))t
=

Ψ (0) +
Ψ ′(0)u
√
tσ

+
Ψ ′′(0)

2

(
u
√
tσ

)2

+R2

(
u
√
tσ

)t
=

1− σ
2

2

(
u
√
tσ

)2

+R2

(
u
√
tσ

)t
=

(
1− 1

t

(
u2

2
+ ηt

))t
,

where we have defined ηt
4= tR2(u/

√
tσ ). Since R2 is the remainder term in the second-order Taylor

approximation, we have limt→∞ηt = 0. Therefore, using (7.7) with at = −
(
u2

2 + ηt
)
, we get

lim
→∞

(
1− 1

t

(
u2

2
+ ηt

))t
= e−u

2/2.

Consequently,

lim
t→∞

ΦZt (u) = lim
t→∞

e−iu
√
t/σ

(
Φ

(
u
√
tσ

))t
= lim
t→∞

(
Ψ

(
u
√
tσ

))t
= e−u

2/2.
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7.3 Variance reduction by averaging

Informally, the Law of Large Numbers says that, if we average a large number of independent
random variables U0,U1, . . . ,Ut−1 with common mean µ, then the resulting quantity Xt

4= 1
t (U0 +

. . .+Ut−1) will be nearly constant (and equal to µ). Moreorver, the Central Limit Theorem says
that, provided all the Ut’s have the same finite variance σ2, then, for all sufficiently large t, the
rescaled average

√
t ·Xt will resemble aN (µ,σ2) random variable. These two fundamental results of

probability theory have many important consequences, and we will discuss them in what follows.

7.3.1 The Monte Carlo method

As we have discussed earlier, there are many cases where randomness can be beneficial. One such
instance is the problem of numerical integration. Suppose that we wish to compute the definite
integral

I =
∫ b

a
g(w)dw,

where g is some function of interest, and where −∞ ≤ a < b ≤ +∞. We assume that g(w) is easy
to evaluate for any given w ∈ [a,b], but computing the integral in closed form is not possible. An
ingenious idea, which has its origins in the Manhattan Project during World War II, is as follows:
Pick a well-behaved pdf f supported on the interval [a,b], i.e., f (w) > 0 for w ∈ [a,b] and f (w) = 0
for w < [a,b] and write

I =
∫ b

a
f (w)

g(w)
f (w)

dw. (7.8)

For example, if [a,b] is a finite interval, then we can take f to be the pdf of aU (a,b) random variable,
in which case f (w) = 1

b−a for w ∈ [a,b] and 0 otherwise; if [a,b] = R, we can take the Gaussian pdf

with mean 0 and variance 1. Now, if we define the function h(w) 4= g(w)
f (w) for all w ∈ [a,b], then

Eq. (7.8) shows that the value I of the integral is equal to the expectation E[h(W )] with W ∼ f :

I = E[h(W )] = E
[
g(W )
f (W )

]
, W ∼ f . (7.9)

Now let us make two additional assumptions:

• We can easily generate i.i.d. samples W0,W1, . . . with pdf f .

• Given any point w ∈ [a,b], it is easy to compute the value h(w) = g(w)/f (w).

Then we can consider the following randomized procedure for approximating I : pick a sufficiently

large t, generate random samples W0,W1, . . . ,Wt−1
i.i.d.∼ f , and compute

Ît
4=

1
t

t−1∑
s=0

h(Ws) =
1
t

t−1∑
s=0

g(Ws)
f (Ws)

. (7.10)
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This is known as the Monte Carlo method1, and Ît is referred to as the Monte Carlo estimate of I .
To get an idea of how good of an estimate Ît is, we will use the LLN and the CLT. First, note

that, if we define the random variable U 4= h(W ) = g(W )
f (W ) , then (7.10) can be rewritten as

Ît
4=

1
t

t−1∑
s=0

Us.

Since W0,W1, . . . are i.i.d., so are U0,U1, . . ., and moreover

E[U0] = E [h(W0)] =
∫ b

a
f (w)

g(w)
f (w)

dw = I.

Therefore, by the LLN, Ît will converge to I as t→∞. In other words, the more samples from the
pdf f we generate, the better our Monte Carlo approximation will be. On the other hand, Ît − I , 0
for any finite t, but we know that

E[(̂It − I)2] = Var[̂It] =
1
t

Var[U ],

so, provided Var[U ] = Var[g(W )/h(W )] is small, the absolute error |̂It − I | will be small on average.
With the help of the CLT, we can say even more — when t is sufficiently large, the probability
distribution of the quantity

Zt =
Ît − I√
tVar[U ]

will be approximately normal with zero mean and unit variance. In particular, if we introduce the
so-called Q-function

Q(z) 4=
1
√

2π

∫ ∞
z
e−x

2/2dx, (7.11)

then the CLT says, roughly, that

P
[̂
It − I ≥ a

√
tVar[U ]

]
≈Q(a) and P

[̂
It − I ≤ −a

√
tVar[U ]

]
≈Q(a)

for any a > 0 and all sufficiently large t. As we will see shortly, Q(a) ≤ e−a2/2, and therefore, for all
sufficiently large t and for all a > 0,

P
[∣∣∣̂It − I ∣∣∣ ≥ a√tVar[U ]

]
= P

[{̂
It − I ≥ a

√
tVar[U ]

}
∪

{̂
It − I ≤ −a

√
tVar[U ]

}]
≤ P

[̂
It − I ≥ a

√
tVar[U ]

]
+ P

[̂
It − I ≤ −a

√
tVar[U ]

]
≈ 2e−a

2/2.

Of course, the variance of U is determined by the function g and on the pdf f , and it may not be
easy to compute it exactly.

1The name “Monte Carlo," which is a reference to the famous Monte Carlo Casino in Monaco, was used as a code
name at the Los Alamos Laboratory during World War II.
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7.3.2 The benefit of diversification in financial portfolios

As we have seen above, taking the average of many independent random variables reduces the
overall variance. If the random variables are not independent, simple averaging may not achieve
this effect because of correlations, but it may be possible to reduce the variance using a weighted
average. We will now see an illustration of this in the context of financial risk management.

Consider an investor who wishes to invest in several assets. Suppose that the assets are
purchased at t = 0 and then sold at t = 1 (the units can be days, weeks, months, years, ...). The
performance of each asset is measured by its return, which is typically defined as the difference
between the sale and the purchase prices, normalized by the purchase price. Thus, if the return is
positive, the investor nets a profit; if the return is negative, the investor suffers a loss; if the return
is zero, the investor breaks even. The return of each asset is determined by the market, so it is
reasonable to think of it as a random variable. The mean of that random variable is the expected
return, and the variance tells us how much the actual return will tend to fluctuate around its mean
value. So, the question is: how should one invest? One obvious idea is to purchase the asset with
the best expected performance, i.e., the largest expected return. However, that asset may be highly
volatile, i.e., the variance of the return may be rather large, which could result in big gains or big
losses. Betting on the least volatile asset is not the most sensible thing either — as an old Russian
proverb goes, “if you don’t take risks, you don’t get to drink champagne." The question is, can
we quantify risk and use this to guide our investment strategy? The first quantitative approach,
based on weighted averaging of assets to balance the variance of the return against the mean was
proposed in 1952 by Harry Markowitz2 who was awarded the Nobel Prize in Economics in 1990.

Suppose we have n assets whose returns R1, . . . ,Rn are random variables with known means
µR(i) 4= E[Ri] and covariances CR(i, j) 4= Cov(Ri ,Rj) = E[(Ri − µR(i))(Rj − µR(j))]. Here, µR(i) is the
expected return of asset i, CR(i, i) = Var[Ri] is the volatility of asset i (which is fancy finance-speak
for the variance of the asset’s return), and CR(i, j) for j , i measures the correlation between assets i
and j. A portfolio is a vector p = (p1, . . . ,pn)T of nonnegative weights that sum to 1, and it represents
the allocation of the investor’s wealth to the n assets. For example, if we have a budget of $x and
each asset costs $1, then, for each i, we invest the pi fraction of $x in the ith asset. For future
convenience, we introduce the random vector R = (R1, . . . ,Rn)T , the vector of expected returns
µ = (µR(1), . . . ,µR(n))T , and the covariance matrix C = (CR(i, j))1≤i,j≤n. We will assume that the
expected returns are nonnegative: µR(i) ≥ 0 for all i.

With this notation, we can write down the actual return, the expected return, and the volatility
of the portfolio p. The actual return is given by

Rp
4=

n∑
i=1

piRi = pTR,

the expected return is

µp
4= E[Rp] = E

 n∑
i=1

piRi

 =
n∑
i=1

piµR(i) = pT µ,

2Harry Markowitz, “Portfolio selection," The Journal of Finance, vol. 7, no. 1, pp. 77–91, March 1952.
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and the volatility is

vp
4= Var[Rp] = Var

 n∑
i=1

piRi

 =
n∑
i=1

n∑
j=1

pipjCR(i, j) = pTCp.

According to Markowitz, for a given target value of the expected return, the best portfolio is the
one whose volatility is the smallest. We will now derive the optimal portfolio p∗ = (p∗1, . . . ,p

∗
n)T for a

given target expected return r — i.e., we will find p∗ to achieve

v∗(r) 4= min
p

{
pTCp : pT µ = r

}
,

where the minimum is over all valid portfolios.
This is a constrained optimization problem, which is solved using the method of Lagrange

multipliers. Introduce the Lagrangian

L(p,λ,ν) 4= pTCp −λ(pT µ− r)− ν(pT e − 1), (7.12)

where λ is the Lagrange multiplier corresponding to the expected return constraint pT µ = r and ν
is the Lagrange multiplier corresponding to the portfolio constraint pT e = p1 + . . .+ pn = 1. Strictly
speaking, we should also enforce the nonnegativity constraints p1, . . . ,pn ≥ 0, but, as we will see,
this constraint will be automatically satisfied by our solution. The optimal solution will be given
by the triple (p∗,λ∗,ν∗), satisfying the conditions

∂L
∂pi

∣∣∣∣∣∣
(p,λ,ν)=(p∗,λ∗,ν∗)

= 0, i = 1, . . . ,n (7.13a)

∂L
∂λ

∣∣∣∣∣∣
(p,λ,ν)=(p∗,λ∗,ν∗)

= 0 (7.13b)

∂L
∂ν

∣∣∣∣∣∣
(p,λ,ν)=(p∗,λ∗,ν∗)

= 0. (7.13c)

The first condition (7.13a) is given by

n∑
j=1

CR(i, j)p∗j = λ∗µR(i) + ν∗, i = 1, . . . ,n

or, in a more succinct matrix form,

Cp∗ = λ∗µ+ ν∗e. (7.14)

The two remaining conditions (7.13b) and (7.13c) are

µT p∗ = r and eT p∗ = 1. (7.15)

9
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We will assume that the covariance matrix C is nonsingular, i.e., detC , 0. Then we can invert
(7.14) to get

p∗ = C−1(λ∗µ+ ν∗e). (7.16)

Notice that we have two unknowns, λ∗ and ν∗, and two equations in (7.15). Substituting the
expression for p∗ from (7.16) into (7.15), we get

aλ∗ + bν∗ = r (7.17a)

bλ∗ + cν∗ = 1 (7.17b)

where we have defined a 4= µTC−1µ, b 4= µTC−1e, and c 4= eTC−1e. This is a system of two linear
equations in two unknowns, and it can be solved to get

λ∗ =
rc − b
∆

and ν∗ =
a− br
∆

, (7.18)

where we have defined ∆
4= ac − b2. This completes the computation of the optimal portfolio p∗,

and we can also compute the volatility: since C is a symmetric matrix [i.e., CT = C], so is its inverse
C−1, and therefore

v∗(r) = (p∗)TCp∗

=
(
C−1(λ∗µ+ ν∗e)

)T
C

(
C−1(λ∗µ+ ν∗e)

)
= (λ∗µ+ ν∗e)T (CC−1)TC−1 (λ∗µ+ ν∗e)

= (λ∗µ+ ν∗e)T C−1 (λ∗µ+ ν∗e)

= (λ∗)2µTC−1µ+ 2λ∗ν∗µTC−1e+ (ν∗)2eTC−1C.

Recalling the definitions of a,b,c and using Eqs. (7.17) and (7.18), we can rewrite the last expression
as

(λ∗)2a+λ∗ν∗b+λ∗ν∗b+ (ν∗)2eTC−1C = λ∗(aλ∗ + bν∗) + ν∗(bλ∗ + cν∗)

= rλ∗ + ν∗

=
(rc − b)r + a− br

∆

=
c2r − 2br + a

∆
.

Altogether, this gives us the explicit expression for v∗(r):

v∗(r) =
cr2 − 2br + a
ac − b2 . (7.19)

This is a quadratic function of r, and it gives us the smallest volatility that can be achieved by
any portfolio p for a given expected return µp = r. Since the coefficient of r2 is nonnegative, the
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minimum value of v∗(r) can be computed by setting the derivative d
dr v
∗(r) to 0, giving rmin = b/c

and

v∗min = min
r
v∗(r) =

c(b/c)2 − 2b(b/c) + a
ac − b2 =

a− b2/c

ac − b2 =
1
c
,

which characterizes the minimum-variance portfolio. In general, though, the expression (7.19),
called the Markowitz frontier, allows one to precisely characterize the trade-off between risk and
return.

The mean-variance portfolio selection of Markowitz was the first investment strategy that
attempted to quantify risk. This approach can be criticized on several points, the main one being
that the mean and the variance may not tell the whole story, unless the returns R1, . . . ,Rn are
jointly Gaussian. In many situations, this is a good approximation to reality, but not in highly
interconnected markets like the one we have today. Moreover, the construction of an optimal
portfolio requires knowledge of the expected returns, the volatilities, and the correlations among
different assets. Typically, these are estimated from a combination of historical data and forecasts,
but, obviously, historical data can never be completely reliable. In addition, many finance managers
may advise in favor of volatile assets, provided the probability that the asset’s return falls below a
given benchmark value is suitably small. To appreciate this, we need to look at the probability of
large deviations, the subject we will briefly touch upon next.

7.4 Large deviations and the Chernoff bound

The LLN and the CLT tell us what happens when we average a sufficiently large number t of
independent random variables. However, when is t large enough? For example, if U0,U1, . . . ,Ut−1

are i.i.d. random variables with mean µ, what is the probability that their average Xt = U0+...+Ut−1
t

rises far above or dips far below the mean µ? In other words, what can we say about the probability

P
[∣∣∣∣∣U0 + . . .+Ut−1

t
−µ

∣∣∣∣∣ ≥ a] (7.20)

for a given tolerance a > 0?
If the only piece of information we have is the mean and the variance of U0, we can already

show that the probability in (7.20) decreases at least as fast as 1/a2. To see this, let us forget for
the moment that we are interested in the average Xt and ask for the probability that an arbitrary
random variable Z takes values outside the interval [EZ −a,EZ +a]. Assume that Var[Z] <∞. Then
the answer is given by Chebyshev’s inequality, which says

P [|Z −EZ | ≥ a] ≤ Var[Z]
a2 . (7.21)

To prove (7.21), we will first establish another result, the so-called Markov’s inequality — if Y is a
random variable taking nonnegative values, then

E[Y ≥ a] ≤ EY
a
. (7.22)

11
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Before proving (7.22), let us first derive (7.21) as a consequence. We simply apply Markov’s
inequality to Y = |Z −EZ |2, for which we have EY = Var[Z]:

P[|Z −EZ | ≥ a] = P[|Z −EZ |2 ≥ a2]

= P[Y ≥ a2]

≤ EY
a2

=
Var[Z]
a2 .

Now we prove (7.22). To that end, we first express the probability P[U ≥ a] as an expectation:

P[Y ≥ a] = E[u(Y − a)],

where u(·) is the unit step function. We now use the following simple but important fact: if f and g
are two functions such that f (y) ≤ g(y) for all y in their common domain, then, for any random
variable Y on that domain, E[f (Y )] ≤ E[g(Y )]. Thus, consider the functions f (y) = u(y − a) and
g(y) = y/a on the positive half-line R+. Then f (y) ≤ g(y). Indeed, since y/a ≥ 0, u(y − a) ≤ y/a for
0 ≤ y ≤ a (with equality at y = a), and y/a ≥ 1 = u(y − a) for y ≥ a. Thus, for any random variable Y
taking nonnegative real values,

P[Y ≥ a] = E[u(Y − a)] ≤ E
[Y
a

]
=

EY
a
,

which is exactly what we wanted to prove.
Now, Chebyshev’s inequality is often very loose. One way to improve on it is to consider other

functions g(y) that dominate the unit step f (y) = u(y−a). A good choice is the exponential function
gλ(y) 4= exp(λ(y − a)), where λ > 0 is a free paramter. The inequality f (y) ≤ gλ(y) holds for all y ∈ R,
so we can consider the tail probability P[Y ≥ a] without restricting Y or a to take nonnegative
values. Then

P[Y ≥ a] = E[f (Y )]

≤ E[gλ(Y )]

= E[eλ(Y−a)]

= e−λaE[eλY ].

Taking a closer look at the quantity E[eλY ], we see that it is reminiscent of the characteristic function
ΦY (u) = E[eiuY ], and indeed equals ΦY (−ia). In fact, if Y has a pdf fY , then E[eλY ] is given by the
Laplace transform of fY at λ. At any rate, defining ΛY (λ) 4= logE[eλY ] (this quantity is called the
cumulant generating function of Y ), we can write

P[Y ≥ a] ≤ exp
{
− (λa+ΛY (λ))

}
. (7.23)

12
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We now observe that the left-hand side of (7.23) is a function of the threshold a > 0, while the
right-hand side is a function of a and the free paramter λ. Since (7.23) holds for every λ ≥ 0, we
can take the minimum of both sides over all such λ to get the tightest inequality:

P[Y ≥ a] ≤min
λ≥0

exp
{
− (λa+ΛY (λ))

}
= exp

{
−max
λ≥0

(λa+ΛY (λ))
}
, (7.24)

where in the second line we have used the fact that the function e−x is decreasing. This inequality
is known as the Chernoff bound, after the great statistician Hermann Chernoff, who was one (but
not the only one) of hte inventors of this technique.

The benefit of (7.24) is that we can often carry out the maximization in (7.24) in closed form.
As an example, consider the case of Y ∼N (0,1). Then

E[eλY ] =
1
√

2π

∫ ∞
−∞
eλye−y

2/2dy

=
1
√

2π

∫ ∞
−∞
e−

1
2 (y2−2λy)dy

=
1
√

2π
eλ

2/2
∫ ∞
−∞
e−

1
2 (y−λ)2

dy

= eλ
2/2,

so, for Y ∼ N (0,1), we have ΛY (λ) = λ2/2 (a similar calculation gives ΛY (λ) = eλ
2σ2/2 for Y ∼

N (0,σ2)). Then it is a simple exercise in calculus to prove that

max
λ≥0

{
λa+

λ2

2

}
=
a2

2

(prove this!), which yields the famous Gaussian tail bound

Q(a) =
1
√

2π

∫ ∞
−∞
e−y

2/2dy ≤ e−a
2/2.

One can get tighter bounds on the Q-function using more refined techniques, but this already gives
us an idea of the power of the method.

Now, closer to home, let us consider the case when Y is the sum of t i.i.d. Bern(p) random

variables: Y =U0 + . . .+Ut−1, where U0, . . . ,Ut−1
i.i.d.∼ Bern(p) — that is, Y ∼ Bin(t,p). Consider any

a ∈ [p,1]. Then

P[Y ≥ at] ≤min
λ≥0

e−λatE[eλY ]

= min
λ≥0

e−λatE[eλ(U0+...+Ut−1)]

= min
λ≥0

e−λatE[eλU0eλU1 . . . eλUt−1]. (7.25)

13
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Since the U ’s are i.i.d., we have

E[eλU0eλU1 . . . eλUt−1] =
(
E[eλU0]

)t
,

and we can compute the expectation inside the parentheses directly:

E[eλU0] = 1− p+ peλ.

Hence, the Chernoff bound for Y ∼ Bin(t,p) takes the form

P[Y ≥ a] ≤
(
min
λ≥0

(
e−λa(1− p+ peλ)

))t
=

(
min
λ≥0

(
(1− p)e−λa + peλ(1−a)

))t
.

Thus, we need to compute the mininum value of the function F(λ) 4= (1− p)e−λa + peλ(1−a) over all
λ ≥ 0. To that end, we first find the critical points by setting the derivative to zero:

F′(λ) = −a(1− p)e−λa + (1− a)peλ(1−a) = 0,

which gives

λ∗ = log
a

1− a
− log

p

1− p
,

which is nonnegative when a ≥ p. Now, since F′′(λ) = a2(1 − p)e−λa + (1 − a)2peλ(1−a) ≥ 0, F(λ∗) =
minλ≥0F(λ), and a straightforward calculation shows that

F(λ∗) = a log
a
p

+ (1− a) log
1− a
1− p

.

Substituting this into (7.25), we get the Chernoff bound for Y ∼ Bin(t,p):

P[Y ≥ ta] ≤ exp
(
−t

(
a log

a
p

+ (1− a) log
1− a
1− p

))
, a ∈ [p,1]. (7.26)

This is much tighter than Chebyshev’s inequality. For example, for p = 0.1, t = 1000, and a = 0.2,
the Chernoff bound (7.26) gives the value of 5.2 × 10−20, whereas Chebyshev’s inequality gives
the value of 2.25× 10−3. Moreover, by weakening (7.26) slightly, we can get the Gaussian-like tail
bound

P

 Y − tp√
tp(1− p)

≥ r
. exp

(
− r2

2p(1− p)
(a− p)2

)
, r ≥ 0, (7.27)

which is consistent with the CLT. To derive this, let us consider the second-order Taylor approxima-
tion of the function

Dp(a) 4= a log
a
p

+ (1− a) log
1− a
1− p

14
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around the point a = p. A straightforward calculation shows that

Dp(p) =
d
da
Dp(a)

∣∣∣∣
a=p

= 0 and
d2

da2Dp(a)
∣∣∣∣
p=a

=
1

p(1− p)
,

so, for a sufficiently close to p, we can write

Dp(a) ≈ 1
2p(1− p)

(a− p)2. (7.28)

Substituting (7.28) into (7.26), we get

P[Y ≥ ta] . exp
(
−
t(a− p)2

2p(1− p)

)
.

In particular, for any r ≥ 0,

P

 Y − tp√
tp(1− p)

≥ r
 = P

[
Y ≥ tp+ r

√
tp(1− p)

]
= P

Y ≥ t(p+ r

√
p(1− p)

t︸             ︷︷             ︸
=a

)
. exp

(
− r2

2tp(1− p)

)
,

so we recover (7.27).

7.5 Chernoff bound and statistical multiplexing

We close this lecture with a nice practical application of the Chernoff bound to digital telephony.
A voice call has the bandwidth of 4 kHz. To digitize it, we sample it at the Nyquist rate of 8 kHz
and then represent each sample using 1 byte. This means that each call requires a line capable of
transmitting at the rate of 64 kbps (kilobits per second), and a naive calculation would suggest
that, in order to transmit 100 calls, we would need a line with capacity of 6.4 Mbps (meagbits per
second). However, this assumes that each call would be active all the time, while in reality 64 kbps
is the peak rate, and most of the time there are silences. This means that we can multiplex many
more calls onto a single line.

To cast this in statistical terms, suppose that we wish to multiplex n calls onto a single 64 Mbps
line. If we divide time into slots, we can think of each call as a Bern(p) ranodm variable that takes
the value 1 when the caller is speaking and 0 when the caller is silent. Since the calls originate
from different places, we can assume that these random variables are mutually independent. Thus,
the number of active calls in each time slot is a Bin(n,p) random varible Y , and the probability of

15
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Figure 1: The probability of going over capacity versus the number of multiplexed calls.

going over capacity (i.e., when all n calls are active simultaneously) can be estimated using the
Chernoff bound:

P [Y ≥ 100] ≤ exp
(
−n

(
100
n

log
100/n
p

+
(
1− 100

n

)
log

1− 100/n
1− p

))
. (7.29)

Fig. 1 shows a plot of the bound in (7.29) (with the log scale on the vertical axis) for p = 0.1. For
example, we can multiplex 600 calls if we are willing to accept exceeding capacity with probability
of 3× 10−6 and 800 calls if we are willing to tolerate going over capacity with probability of 0.07.
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