
Intro to Stochastic Systems (Spring 17) Lectures 15–18

5 Noise

5.1 Shot noise

Without getting too much into the underlying device physics, shot noise refers to random current
fluctuations in electronic devices due to discreteness of charge carriers. The first analysis of shot
noise was published by Walter Schottky in 1918 in the context of vacuum tubes, although shot noise
also manifests itself in semiconductor devices, such as diodes and transistors, and in optoelectronic
devices as a consequence of the fact that electromagnetic radiation is carried by photons.

A vacuum tube is a device that has a pair of terminals or electrodes enclosed in an evacuated
glass container. It is used to control the flow of current in a circuit. For example, the simplest type
of a vacuum tube, the diode, allows the current to flow in one direction only. These days, there are
other types of diodes based on semiconductors, but historically vacuum tubes have been the first
active electronic devices. In a diode, electrons are emitted at the cathode and collected at the anode.
The duration of each emission event is assumed to be so short that it can be approximated by a
unit impulse, and emission events in nonoverlapping time intervals are assumed to be statistically
independent. Thus the emission times can be thought of as arrival times of a Poisson process
with rate λ, where λ is the average number of electron emissions per unit time. Thus, the current
through the diode has a dc component equal to −qλ, where q = −1.602× 10−19 Coulombs is the
charge of the electron. Shot noise describes the fluctuations around this dc component. The
transit of each electron from the cathode to the anode induces a time-varying current, whose shape
depends on the device characteristics. Thus, the current through the diode at time t ≥ 0 is described
by the stochastic signal I = (It)t≥0 with

It = q
∞∑
k=1

h(t − Tk), (5.1)

where T = (Tk)k∈N are the arrival times of a Poisson process with rate λ, and qh(t) is the current
induced in the diode by an electron emitted at time t = 0. We assume that h(t) = 0 for t < 0 (no
current before an emission) and that

∫∞
−∞h(t)dt =

∫∞
0 h(t)dt = 1 (conservation of charge).

The mean and the variance of It are given by Campbell’s theorem:

mI (t) = E[It] = qλ
∫ ∞
−∞
h(τ)dτ = qλ

∫ ∞
0
h(τ)dτ = qλ

(which is the dc component) and

σ2
I (t) = Var[It] = q2λ

∫ ∞
−∞
h2(τ)dτ = q2λ

∫ ∞
0
h2(τ)dτ

(which measures the fluctuations due to randomly timed emissions). Denoting by H the Fourier
transform of h, we note that ∫ ∞

0
h(τ)dτ =H(0)
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and, by Parseval’s theorem, ∫ ∞
0
h2(τ)dτ =

1
2π

∫ ∞
−∞
|H(ω)|2dω.

Therefore,

mI (t) = qλH(0) and σ2
I (t) =

q2λ

2π

∫ ∞
−∞
|H(ω)|2dω.

However, in order to get the full picture of shot-noise current, we will need to compute the
autocorrelation of I and its power spectral density.

In order to compute RI (t, t + τ), we will use the same approach that we relied on to prove
Campbell’s formula for the variance of It. Namely, we first write I as the output of an LTI system
with impulse response h and with the input Z = (Zt)t≥0 given by

Zt = q
∞∑
k=1

δ(t − Tk).

Here, Z is a train of unit impulses originating at the arrival times T1,T2, . . .. Each impulse cor-
responds to the emission of a single electron at the cathode. We have already computed the
autocorrelation of Z when proving Campbell’s theorem: it is given by

RZ(τ) = q2
(
λ2 +λδ(τ)

)
. (5.2)

Therefore,

RI (τ) = h̃ ∗ h ∗RZ(τ)

=
∫ ∞
−∞

∫ ∞
−∞
h̃(τ − s)h(s − t)RZ(t)dsdt

= q2λ2
∫ ∞
−∞

∫ ∞
−∞
h̃(τ − s)h(s − t)dsdt + q2λ

∫ ∞
−∞

∫ ∞
−∞
h̃(τ − s)h(s − t)δ(t)dsdt

= q2λ

(∫ ∞
−∞
h(t)dt

)2

+ q2λh̃ ∗ h(τ)

= q2λ+ q2λh̃ ∗ h(τ),

where we have used the definition of the time reversal h̃(t) = h(−t), as well as the fact that∫∞
−∞h(t)dt = 1. The power spectral density of I is the Fourier transform of RI :

SI (ω) = 2πq2λδ(ω) + q2λ|H(ω)|2. (5.3)

Note the ttwo terms in (5.3): the first term is the dc term, while the second term is due to the
filtering effect of h on Z.
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It is useful to consider an example: Assuming that each electron moves from the cathode to
the anode with constant velocity and that a constant time t0 elapses between the emission and the
collection of each electron, it can be shown1 that the impulse response h has the form

h(t) =

 1
t0
, 0 ≤ t ≤ t0

0, otherwise
.

Taking the Fourier transform, we get

H(ω) =
∫ ∞
−∞
h(t)e−iωtdt

=
1
t0

∫ t0

0
e−iωtdt

=
−1

iωt0
e−iωt

∣∣∣∣t0
0

=
1− e−iωt0

iωt0

=
2e−iωt0/2

ωt0

eiωt0/2 − e−iω0t/2

2i

= e−iωt0/2
sin

(
ωt0
2

)
ωt0
2

= e−iωt0/2 sinc
(ωt0

2π

)
.

Substituting this into (5.3), we get

SI (ω) = 2πq2λδ(ω) + q2λsinc2
(ωt0

2π

)
.

5.2 Johnson–Nyquist noise

Shot noise depends only on the current, and is due entirely to the discreteness of charge carriers.
Another source of noise in devices is due to thermal agitation of charge carriers, and its effect
increases with resistance and with temperature. Let us first consider the case of a noisy resistor with
resistance R at absolute temperature T . Using an argument based on the so-called equipartition
theorem from statistical physics, Nyquist showed that such a noisy resistor can be described by a
Thévenin equivalent model consisting of a noiseless resistor with resistance R in series with a noisy
voltage source whose voltage is given by a Gaussian stochastic signal E = (Et)t∈R with zero mean and
the white-noise autocorrelation function RE(τ) = 2kT Rδ(τ). Here, T is the temperature in Kelvin
(e.g., 290 K corresponds to room temperature), and k = 1.3806×10−23 J/K is the Boltzmann constant.

1See, e.g., Section 4.1 in Hermann Haus, Electromagnetic Noise and Quantum Optical Measurements, Springer, Berlin,
2000.
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Figure 1: An RC circuit with a noisy resistor.

Alternatively, we can use the Norton equivalent, where the noiseless resistor R is connected in
parallel with a noisy current source J = (Jt)t∈R given by Jt = Et

R , so that RJ (τ) = 2kTGδ(τ), where
G = 1/R is the conductance. Consequently, the Nyquist voltage source has the power spectral
density SE(ω) = 2kT R, while the Nyquist current source has SJ (ω) = 2kTG. Of course, ideal white
noise is unphysical (recall that it has infnite average power), and it is often sufficient to assume
that the noisy voltage (or current) power spectral density is constant and nonzero only over some
finite bandwidth. In that case, we will have

SE(ω) =

2kT R, |ω| ≤ 2πB

0, otherwise
(5.4)

where B is the bandwidth in Hz, and so

E[E2
t ] =

1
2π

∫ ∞
−∞
SE(ω)dω

=
1

2π

∫ 2πB

−2πB
2kT Rdω

= 4kT RB.

Nyquist obtained this result by modeling the resistor as a transmission line and by considering
the thermodynamics of the Brownian motion of electrons in the resistor.2 Here, we will take it for
granted that E is a Gaussian white-noise stochastic signal with power spectral density SE(ω) = S0
and derive the constant S0 using a bit of circuit analysis, input-output relations for LTI systems
with stochastic inputs, and a result from thermodynamics known as the equipartition theorem.

Let us think about how we would go about measuring the voltage fluctuations due to thermal
noise. Consider the RC circuit shown in Figure 1. Since Et is a noisy voltage source, all currents
and voltages in this circuit are stochastic signals. We connect a capacitor in parallel with the noisy
resistor, and will measure the voltage across the terminals a and b, i.e., the voltage across the
capacitor. Kicrhhoff’s voltage law gives

−ItR+Et −Vt = 0, (5.5)

2H. Nyquist, “Thermal agitation of electric charge in conductors,” Physical Review, vol. 32, pp. 110–113, 1928
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where the current through the capacitor is given by It = C dVt
dt . Consequently,

RC
dVt
dt

+Vt = Et ,

which means that the transfer function from E to V is given by

H(ω) =
1

1 + iωRC
.

Thus, the power spectral density of V is given by

SV (ω) = |H(ω)|2SE(ω)

=
SE(ω)

1 +ω2(RC)2

=
S0

1 +ω2(RC)2 . (5.6)

From this, we can compute the average energy stored in the capacitor:

1
2
CE[V 2

t ] =
1
2
C · 1

2π

∫ ∞
−∞
SV (ω)dω

=
CS0

4π

∫ ∞
−∞

dω
1 +ω2(RC)2 . (5.7)

The integral can be computed in closed form: consider the trigonometric substitution x = tanθ.
Then dx = (1/ cos2θ)dθ, and ∫

dx
1 + x2 =

∫
1

1 + tan2θ

dθ
cos2θ

=
∫

dθ

sin2θ + cos2θ

=
∫

dθ

= θ + const

= arctanx+ const.

Therefore, ∫ ∞
−∞

dx
1 + x2 =

∫ π/2

π/2
dθ = π.

Using this in Eq. (5.7), we obtain

1
2
CE[V 2

t ] =
S0

4R
. (5.8)
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Now we invoke the equipartition theorem, which says that, in a system consisting of many inde-
pendent degrees of freedom in thermal equilibrium at temperature T , the average energy stored in
each degree of freedom is equal to 1

2kT , where k is the Boltzmann constant. Treating the RC circuit
as a single degree of freedom and using (5.8), we get

1
2
CE[V 2

t ] =
S0

4R
=

1
2
kT ,

which gives S0 = 2kT R.
Another way to express (5.6), with S0 = 2kT R, is as follows: Let Z(ω) denote the impedance

of the circuit between the terminals a and b. Viewed from these terminals, the resistor R and the
capacitor C are connected in parallel, and therefore

1
Z(ω)

=
1

ZR(ω)
+

1
ZC(ω)

=
1
R

+ iωC,

or, equivalently,

Z(ω) =
R

1 + iωRC
.

Then, for the ideal Johnson–Nyquist noise source, we have

SV (ω) = 2kT ReZ(ω). (5.9)

We will now show that Eq. (5.9) is a special case of a more general theorem of Nyquist: The
voltage across any pair of terminals a,b in a network consisting of noisy resistors at temperature T ,
inductors, and capacitors has the power spectral density

SV (ω) = 2kT ReZ(ω) (5.10)

for ideal Johnson–Nyquist noise, where Z(ω) is the impedance of the network across the termimal
pair a,b.

T =

✓
A B
C D

◆
V1 V2

I1 I2

+

�

+

�

Figure 2: A two-port circuit.

In order to prove Nyquist’s theorem, we first need to introduce some background concepts. A
two-port network, shown in Figure 2, is a circuit with two ports, i.e., two pairs of terminals that
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can be connected to external circuits. Each port has a voltage and a current, and the relationship
between the voltages and the currents is specified by the so-called transfer matrix(

V1
I1

)
=

(
A B
C D

)(
V2
I2

)
,

where V1 is the voltage across port 1, I1 is the current into port 1, V2 is the voltage across port 2,
and I2 is the current out of port 2. It is important to keep in mind that this is a frequency-domain
description. We say that the two-port circuit is:

• reciprocal if the transfer function from I1 to V2 is equal to the transfer function from −I2 to
V1:

V2(ω)
I1(ω)

= −V1(ω)
I2(ω)

, ∀ω

(the minus sign is there because I2 is the current flowing out of port 2);

• lossless if the power supplied at port 1 is equal to the power that exits at port 2, and vice
versa.

A network that consists only of resistors, inductors, and capacitors is reciprocal; a network that
consists only of inductors and capacitors is lossless. We will assume, for simplicity, that our
network has only one resistor, and all other elements are lossless. If we represent the noisy resistor
by its Norton equivalent consisting of a noiseless resistor in parallel with a noisy current source
J = (Jt)t∈R, then we can view J as a (noisy) current I1 = (I1,t) into port 1 of a two-port network and
the voltage across the resistor as the noisy voltage V1 = (V1,t) across port 1, and where we associate
port 2 with the terminals a and b — see Figure 3. Thus, the voltage signal of interest is the voltage
V2 = (V2,t) across port 2. The power flowing into port 2 is equal to |I2(ω)|2 ReZ(ω), and, since the

T =

✓
A B
C D

◆
V1 V2

I2

+

�

+

�

I1

R

Figure 3: A general passive network with a noisy resistor; the T -matrix represents the rest of the
network, which consists only of inductors and capacitors.

network connected to the resistor is lossless by assumption, all of this power is dissipated at the
resistor. That is,

|I2(ω)|2 ReZ(ω) =
|V1(ω)|2

R
. (5.11)
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Let H denote the transfer function from I1 to V2. By reciprocity, it is equal to the transfer function
from −I2 to V1. Using this fact together with (5.11), we can write

|H(ω)|2 =
∣∣∣∣∣V2(ω)
I1(ω)

∣∣∣∣∣2 =
∣∣∣∣∣V1(ω)
I2(ω)

∣∣∣∣∣2 = RReZ(ω). (5.12)

Since the power spectral density of the voltage V = V2 is given by

SV (ω) = |H(ω)|2SJ (ω),

we can use (5.12) and the fact that SJ (ω) = SE(ω)
R2 to obtain Eq. (5.10).

5.3 Bonus section: amplifier noise

A good illustration of the theory of noise sources in circuits is the analysis of amplifier noise. An
amplifier is an active device that provides a power gain relative to its input. A noisy amplifier, just
like its name suggests, also introduces additional noise at the output. In order to discuss amplifiers,
we first must introduce the notions of a noisy source and exchangeable power. A source, shown
in Figure 4 (left), is a one-port circuit (i.e., a circuit with a single pair of terminals) that has the
voltage-current characteristic

V = ZSI +E, (5.13)

where V is the voltage across the source’s terminals, ZS is the source impedance, I is the current
flowing into the source, and E is the open-circuit voltage of the source. We say that the source is
noisy if its open-circuit voltage E is a stochastic signal. For example, if the source is a noisy resistor
with resistance R at temperature T , then we can take E to be the bandlimited Johnson–Nyquist
voltage noise.

V

+

�

I

ZS

+ �
E

V

+

�

I

ZS

+ �
E

ZL

Figure 4: The equivalent circuit of a source (left) and a source connected to a load (right).

Suppose that we connect the source to a load with load impedance ZL, see Figure 4 (right). The
average power delivered to the load at time t is given by

PL,t = E[|It |2]ReZL,
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where the Fourier transform of It can be computed from the Kirchhoff’s voltage law:

I(ω) = − E(ω)
ZL +ZS

.

Therefore,

PL,t =
E[|Et |2]ReZL

|ZS +ZL|2
. (5.14)

If E is weakly stationary, then E[|E2
t |] does not depend on t, and we can express (5.14) as

PL =
RE(0)ReZL

|ZS +ZL|2
, (5.15)

where RE(τ) denotes the autocorrelation function of E. The quantity in (5.15) is a function of the
load impedance ZL. Exchangeable power, denoted by Pex, is the global extremum (maximum or
minimum) value of the power fed to the load by the source. Exchangeable power can be positive
(the source dissipating power into the load) or negative (the load dissipating power into the source).
To compute it, we first separate the load and the source impedances into the resistive and the
reactive components: ZL = RL + iXL and ZS = RS + iXS. Then

PL =
RE(0)RL

(RL +RS)2 + (XL +XS)2 ,

and since

∂PL

∂XL
=

−2RE(0)(XL +XS)

((RL +RS)2 + (XL +XS)2)2 ,

we see that XL = −XS is a necessary condition for extremum. Therefore, we assume that XL = −XS,
and so now we need to compute the extremum of

RE(0)RL

(RL +RS)2

over RL. In this case, it is a simple exercise in calculus to show that, upon setting RL = RS, the
power delivered to the load achieves its global maximum if RS > 0 and global minimum if RL < 0.
In either case, the global extremum value is the exchangeable power, given by

Pex =
RE(0)

2(ZS +Z∗S)
, (5.16)

and it is achieved by matching the load impedance to the source impedance, i.e., ZL = Z∗S.
Now suppose that we connect the source to one port of a two-port circuit with transfer matrix

T , as shown in Figure 5. The exchangeable gain G of the resulting network is defined as the ratio of
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T =

✓
A B
C D

◆
V 0

1 V2

I2

+
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+

�

I 01

ZS
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+

�

E

Figure 5: A noisy source connected to a noiseless two-port circuit.

the output exchangeable power Pex,2 (i.e, at port 2) to the input exchangeable power Pex,1 (i.e., at
port 1). The latter is given by (5.16):

Pex,1 =
RE(0)

2(ZS +Z∗S)
.

To compute Pex,2, we need a voltage-current characteristic like (5.13) to relate V2, I2, and E. To that
end, we first write down the relation between the input and output currents and voltages for our
two-port:

V ′1 = AV2 +BI2, (5.17a)

I ′1 = CV2 +DI2. (5.17b)

Substituting the expressions (5.17) into Kirchhoff’s voltage law V ′1 = E − I ′1ZS, we obtain

AV2 +BI2 = −(CV2 +DI2)ZS +E.

Rearranging, we get

V2 = −B+DZS

A+CZS
I2 +

1
A+CZS

E,

so, looking from port 2, we can view the whole circuit as a source with effective impedance
Z̃S = B+DZS

A+CZS
and open-circuit voltage Ẽ = E

A+CZS
. Therefore, the output exchangeable power is given

by

Pex,2 =
RẼ(0)

2(Z̃S + Z̃∗S)
. (5.18)

Now, since

RẼ(0) =
RE(0)
|A+CZS|2

10
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and

Z̃S + Z̃∗S =
B+DZS

A+CZS
+
B∗ +D∗Z∗S
A∗ +C∗Z∗S

=
(B+DZS)(A+CZS)∗ + (B+DZS)∗(A+CZS)

|A+CZS|2
,

we get from (5.18)

Pex,2 =
RE(0)

2[(B+DZS)(A+CZS)∗ + (B+DZS)∗(A+CZS)]
,

and can now write down the exchangeable gain:

G =
Pex,2

Pex,1
=

ZS +Z∗S
(B+DZS)(A+CZS)∗ + (B+DZS)∗(A+CZS)

(5.19)

This expression looks rather formidable, but it can be written down more succinctly using matrix
notation. Define the following complex vector v and matrix S:

v
4=
(

1
Z∗S

)
, S

4= 2
(
0 1
1 0

)
,

and recall that the Hermitian conjugate A† of a matrix A is obtained by taking the complex conjugate
of each entry, followed by taking the transpose. Then we can write

G =
v†Sv

v†T ST †v
(5.20)

(prove this!). An amplifier has G ≥ 1.

T =

✓
A B
C D

◆
V 0

1 V2

I2

+

�

+

�

I 01

ZS

+�
E

J0

+ �
E0

+

�

I1

V1

noisy amplifier

noisy network

noise-free network

Figure 6: An equivalent circuit model of a noisy amplifier.

Now we are going to consider the effect of internal noise in the amplifier. Amplifier noise
is typically modeled by including internal noisy voltage and current sources into the amplifier
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network, as shown in Figure 6. We assume that the noisy voltage E0 and the noisy current J0 are
independent of the noisy source voltage E. The effect of these internal noise sources manifests
itself at the output of the amplifier. To quantify it, one typically uses the so-called noise figure F,
which is defined as the ratio of the output signal-to-noise ratio to the input signal-to-noise ratio.
In our case, the noise figure is given by the ratio of the variance of the voltage V ′1 at the input
to the noiseless part of the amplifier and the variance of the source voltage E. To compute the
variance of V ′1,t, we first replace the combination of the source and the noisy amplifier network
by its Thévenin equivalent circuit with source impedance ZS in series with the Thévenin voltage
source ETh = E −E0 − JZS. Then V ′1 = ETh, and, since E is independent of E0 and J0,

E[|V ′1,t |
2] = E[|Et |2] + E[|E0,t + J0,tZS|2].

Assuming that all noise sources are jointly weakly stationary, we have E[|Et |2] = RE(0) and

E[|E0,t + J0,tZS|2] = E[|E0,t |2] + 2ReE[E∗0,tJ0,t] + E[|J0,t |2]

= RE0
(0) + 2Re,RE0J0(0) +RJ0(0).

Therefore, the amplifier noise figure is given by

F =
E[|V ′1,t |2]

E[|Et |2]

=
RE(0) +RE0

(0) + 2Re,RE0J0(0) +RJ0(0)
RE(0)

= 1 +
RE0

(0) + 2Re,RE0J0(0) +RJ0(0)
RE(0)

.

Note that F ≥ 1. If the input source consists of an impedance ZS in series with a bandlimited
Johnson–Nyquist noise source with bandwidth B at temperature T , then RE(0) = 4kT BReZS, and
therefore we can write down the so-called excess noise figure

F − 1 =
RE0

(0) + 2Re,RE0J0(0) +RJ0(0)
4kT BReZS

=
RTh(0)

2kT B(ZS +Z∗S)
,

where RTh is the autocorrelation function of ETh. Thus, F − 1 is equal to the exchangeable power
P Th

ex at the source with impedance ZS and noisy open-circuit voltage ETh, divided by kT B:

F − 1 =
P Th

ex
kT B

.

Now that we have obtained the expressions for the exchangeable gain G and the noise figure F, we
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can compute the so-called amplifier noise measure:

M
4=
F − 1

1− 1/G

=
P Th

ex
kT B
v†Sv

v†T ST †v

.

For high-gain amplifiers (G� 1), M ≈ F − 1.

5.4 1/f noise

Both shot noise and the Johnson–Nyquist noise are due to fundamental physical phenomena,
namely discreteness of charge carriers and their thermal agitation. These two effects would still be
present in ideal devices. However, measurements reveal another noise phenomenon due to the
presence of impurities. This phenomenon, referred to as 1/f noise for reasons that will become
clear shortly, manifests itself as random fluctuations of the conductance of the device due to
spontaneous generation and recombination of electrons and holes. These fluctuations are especially
noticeable at low frequencies, which is why frequency upconversion is often employed in low-noise
electronic devices. In fact, experiments have shown that the power spectrum of these conductance
fluctuations behaves as 1/f , where f =ω/2π is the frequency in Hertz. This is the reason for the
name “1/f noise.”

As we will now see, a simple model of 1/f noise can be derived by starting from a toy Markov-
chain model of generation-recombination noise in a nearly pure semiconductor. Consider a
continuous-time stochastic signal X = (Xt)t∈R with binary state space X = {−1,+1}. The state
−1 corresponds to the spontaneous generation of an electron, the state +1 corresponds to the
spontaneous generation of a hole, and we will arrange things in such a way that, on average,
there are no charge fluctuations, so P[Xt = −1] = P[Xt = +1] = 1

2 . For s ≤ t, let Ms,t(−,−) denote
the conditional probability that the Xt = −1 given Xs = −1, and define Ms,t(−,+), Ms,t(+,−), and
Ms,t(+,+) analogously. We will first construct a time-discretized approximation, and then look
at the continuous-time limit. Thus, pick a sufficiently small value h > 0 and assume that the
state can change at times . . . ,−2h,−h,0,h,2h, . . ., and that the state transitions at different times are
independent. Let pt(−) 4= P[Xt = −1]. We will assume that, for small enough h, we can approximate
Mt,t+h(−,+) = Mt,t+h(+,−) ' αh for some α > 0, i.e., α is the rate of state transitions per unit time.
Then, for any t ∈ R and any h < 1/α, we have

pt+h(−) = pt(−)Mt,t+h(−,−) + pt(+)Mt,t+h(+,−)

= (1−αh)pt(−) +αhpt(+),

and an analogous derivation gives

pt+h(+) = αhpt(−) + (1−αh)pt(+).

In matrix form, we obtain(
pt+h(−) pt+h(+)

)
=

(
pt(−) pt(+)

)((1−α)h αh
αh 1−αh

)
, (5.21)

13
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which, upon rearranging, becomes

1
h

(
pt+h(−)− pt(−) pt+h(+)− pt(+)

)
=

(
pt(−) pt(+)

)(−α α
α −α

)
.

Taking the continuous-time limit h→ 0, we end up the first-order matrix ODE

d
dt

(
pt(−) pt(+)

)
=

(
pt(−) pt(+)

)(−α α
α −α

)
. (5.22)

It can be solved by diagonalizing the matrix on the right, and, for any t ∈ R and any τ ≥ 0, the
solution is given by

(
pt+τ (−) pt+τ (+)

)
=

(
pt(−) pt(+)

)
1 + e−2ατ

2
1− e−2ατ

2
1− e−2ατ

2
1 + e−2ατ

2

 . (5.23)

For s ≤ t, define the matrix

Ms,t =
(
Ms,t(−,−) Ms,t(−,+)
Ms,t(+,−) Ms,t(+,+)

)
4=


1 + e−2α(t−s)

2
1− e−2α(t−s)

2
1− e−2α(t−s)

2
1 + e−2α(t−s)

2

 . (5.24)

Then Ms,s = I , pt = psMs,t, and a simple calculation shows that the probability vector π = (1/2,1/2)T

is invariant under all Ms,t, i.e., if ps(−) = ps(+) = 1/2, then pt(−) = pt(+) = 1/2 as well. We will
assume, therefore, that pt(−) = pt(+) = 1/2 for all t, corresponding to no excess electrons or holes on
average. Since

P[Xt = Xt+τ ] = P[Xt = −1,Xt+τ = −1] + P[Xt = +1,Xt+τ = +1]

= pt(−)Mt,t+τ (−,−) + pt(+)Mt,t+τ (+,+)

=
1 + e−2ατ

2

and

P[Xt = −Xt+τ ] = P[Xt = −1,Xt+τ = +1] + P[Xt = +1,Xt+τ = −1]

= pt(−)Mt,t+τ (−,+) + pt(+)Mt,t+τ (+,−)

=
1− e−2ατ

2
,

the autocorrelation function of X is given by

RX(t, t + τ) = E[XtXt+τ ]

= P[Xt = Xt+τ ]−P[Xt = −Xt+τ ]

= e−2ατ .

14
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A similar calculation shows that RX(t − τ, t) = e−2ατ , so we obtain

RX(τ) = e−2α|τ |. (5.25)

It is convenient to define the relaxation time t0
4= 1/2α and express (5.25) as RX(τ) = e−|τ |/t0 . Now let

us compute the power spectral density of X:

SX(ω) =
∫ ∞
−∞
RX(τ)e−iωτdτ

=
∫ ∞
−∞
e−|τ |/t0e−iωτdτ

=
∫ 0

−∞
e(1/t0−iω)τdτ +

∫ ∞
0
e−(1/t0+iω)τdτ

=
1

1/t0 − iω
+

1
1/t0 + iω

=
2/t0

1/t20 +ω2

=
2t0

1 + (t0ω)2 .

In this context, it is customary to work with the frequency in Hertz, f =ω/2π, so we obtain

SX(f ) =
2t0

1 + (2πt0f )2 , (5.26)

which is known as the Lorentzian power spectrum, see Figure 7.
The Lorentzian power spectrum describes the conductance fluctuations in a nearly pure semi-

conductor, where t0 is the characteristic timescale of electron-hole recombination. However, in
a typical semiconductor device with impurities, there are multiple generation-recombination
processes going on, each with its own relaxation time. A good physical model, as it turns out,
results if we assume that the relaxation time is a nonnegative random variable with a pdf g, such
that, for any t′ ≤ t0 ≤ t′′ and any n times t1 < t2 < . . . < tn,

P[t′ ≤ T0 ≤ t′′ ,Xt1 = x1, . . . ,Xtn = xn] =
1
2

∫ t′′

t′

n−1∏
k=1

1 + (−1)|xk−xk+1|e−(tk+1−tk)/t0

2
g(t0)dt0.

Under this assumption,

P[Xt = Xt+τ ] = P[Xt−τ = Xt] =
1
2

∫ ∞
−∞
g(t0)(1 + e−τ/t0)dt0

and

P[Xt = −Xt+τ ] = P[Xt−τ = −Xt] =
1
2

∫ ∞
−∞
g(t0)(1− e−τ/t0)dt0,

15
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Figure 7: The Lorentzian power spectrum, shown here for t0 = 1.

which gives the autocorrelation function

RX(τ) =
∫ ∞
−∞
g(t0)e−|τ |/tdt0

and the power spectrum

SX(f ) =
∫ ∞
−∞

2t0g(t0)
1 + (2πt0f )2 dt0. (5.27)

We will now show that the 1/f power spectrum results if we choose the pdf g appropriately.
From semiconductor physics, we know that, in thermal equilibrium at absoulte temperature T ,

the relaxation time in a material with the energy difference ∆E between the electron and the hole
energy levels is given by ce∆E/kT for some c > 0, where k is the Boltzmann constant. If we assume
that the energy gap ∆E is a random variable with a uniform distribution over some range [∆0,∆1],
then the pdf g of the relaxation time will be given by

g(t0) =


kT

(∆1 −∆0)t0
, for ce∆0/kT ≤ t0 ≤ ce∆1/kT

0, otherwise
. (5.28)

Substituting (5.28) into (5.27), we get

SX(f ) =
kT

(∆1 −∆0)

∫ ce∆1/kT

ce∆0/kT

2
1 + (2πtf )2 dt

=
kT

2πf (∆1 −∆0)
arctan(2πf t)

∣∣∣∣ce∆1/kT

ce∆0/kT
,

which behaves like 1/f for large values of ∆1 −∆0.
Last version: April 10, 2017
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