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4 Stochastic signal processing

Now that we have at least some idea of what stochastic signals are, we can begin to analyze the
behavior of systems with stochastic inputs. Let’s recall that a system is anything that transforms an
input signal into an output signal. Let’s keep things simple and work with continuous-time input
and output signals, and consider the case of deterministic inputs first. A system S transforms an
input signal x : R→ R into an output signal y : R→ R, and we denote this fact by writing y = S[x].
This notation signifies the fact that the input to S is the entire signal x, and the output of S is the
entire signal y. Thus, the value y(t) = S[x](t) of the output at time t may, in principle, depend on all
x(s), s ∈ R.

Clearly, at this level of abstraction there is not a whole lot that can be done. So, it is useful to
single out various types of systems:

• causal — when the current value of the output is not affected by the future values of the
input. Formally, for any t ∈ R and for any two inputs x1 and x2, such that x1(s) = x2(s) for all
s ≤ t, we have

S[x1](t) = S[x2](t).

• memoryless — when the current value of the output depends only on the current value of
the input. Formally, for any t ∈ R and for any two inputs x1 and x2, such that x1(t) = x2(t), we
have

S[x1](t) = S[x2](t).

Any memoryless system is causal.

• time-invariant — when the output due to a time-shifted version of the input is the time-
shifted version of the output. Formally, given a signal v : R→ R and an arbitrary τ ∈ R, define
its time shift vτ : R→ R by vτ (t) 4= v(t − τ). Then

S[xτ ] = (S[x])τ .

• linear — when the output due to a superposition of inputs is the superposition of the outputs.
Formally, given any two input signals x1,x2 : R→ R and any two real coefficients α1,α2,

S[α1x1 +α2x2] = α1S[x1] +α2S[x2].

We have already seen how Markov chains can be viewed as outputs of deterministic systems driven
by stochastic inputs. We will come back to this description a bit later, but first we will examine
the scenario where a continuous-time stochastic signal is used as an input to a linear system, and
describe the properties of the resulting output signal in terms of the properties of the input and of
the system.
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4.1 Linear time-invariant systems: a quick review

In ECE 210, we mostly deal with systems that are linear and time-invariant (LTI), because for such
systems the relationship between the input and the output is particularly easy to write down. Each
linear system is described by a function h : R×R→ R, such that, for any input signal x, the output
is given by the superposition integral

S[x](t) =
∫ ∞
−∞
h(t,τ)x(τ)dτ (4.1)

(as a memory refresher, prove that Eq. (4.1) specifies a linear system). The function h is called the
impulse response of the system because it is explicitly given by

h(t,τ) = S[x](t) when x(t) = δ(t − τ).

When the system is also time-invariant, h(t,τ) = h(t + t0, τ + t0) for any t0 ∈ R, so, overloading the
notation a bit, we can rewrite (4.1) as a convolution:

S[x](t) = h ∗ x(t) =
∫ ∞
−∞
h(t − τ)x(τ)dτ. (4.2)

While computing convolutions is an important character-building part of ECE 210, things are
much easier when we pass to the frequency domain using Fourier transforms. The Fourier transform
of a function g : R→ R (whenever it exists) is defined as

ĝ(ω) 4=
∫ ∞
−∞
g(t)e−iωtdt, (4.3)

where the argument ω ∈ R is the frequency1 and i =
√
−1 is the imaginary unit. To get back to the

time domain, we use the Fourier inversion formula

g(t) =
1

2π

∫ ∞
−∞
ĝ(ω)eiωtdω. (4.4)

The Fourier transform ĥ of the impulse response h is called the transfer function of the system, and
the time-domain expression y = h ∗ x becomes

ŷ =Hx̂

in the frequency domain, where x̂ is the Fourier transform of the input x, and ŷ is the Fourier
transform of the output y.

Remark on notation. In ECE 210, you were probably used to writing uppercase letters for Fourier
transforms, like this: X(ω) instead of x̂(ω). However, this will cause confusion when we start

1Not to be confused with the generic element of the sample space Ω — hopefully, the meaning will be clear from the
context.
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dealing with stochastic inputs, since in that case X will already denote the time-domain input. I
will still write H instead of ĥ because one must pay at least some respect to tradition, and because
we will hardly ever use H to denote stochastic signals.

So, our next order of business is to adopt this formalism to the case when the input is a stochastic
signal. But first we need to discuss the concept of stationarity.

4.2 Stationarity: weak and strong

As we have seen, both the Wiener process and the Poisson process have stationary increments.
For example, if W = (Wt)t≥0 is a Wiener process, then, for any two times 0 ≤ s ≤ t and for any
r ≥ −s, the distribution of the increment Wt −Ws is the same as the distribution of the increment
Wt+r −Ws+r , namely Gaussian with mean 0 and variance D(t − s). Thus, the statistical properties of
the increments of W are unaffected by time shifts.

This property turns out to be rather useful, so we abstract it into a definition: A stochastic signal
X = (Xt)t∈T is (strongly) stationary if, for any n ∈ N, any finite sequence of times t1, t2, . . . , tn ∈ T , and
any r ∈ R, such that t1 + r, . . . , tn + r ∈ T ,

(Xt1 ,Xt2 , . . . ,Xtn)
d= (Xt1+r ,Xt2+r , . . . ,Xtn+r ) (4.5)

(the notation U d= V means that the random quantities U and V have the same distribution). When
X has a discrete state space X, the stationarity condition (4.5) means that

P[Xt1 = x1,Xt2 = x2, . . . ,Xtn = xn] = P[Xt1+r = x1,Xt2+r = x2, . . . ,Xtn+r = xn]

for all x1, . . . ,xn ∈ X; when X has a continuous state space X, (4.5) means that

P[a1 ≤ Xt1 ≤ b1, . . . , an ≤ Xtn ≤ bn] = P[a1 ≤ Xt1+r ≤ b1, . . . , an ≤ Xtn+r ≤ bn]

for all subintervals [a1,b1], . . . , [an,bn] of X. This definition covers discrete and continuous time. For
example, any i.i.d. process X = (Xk)k∈Z+

is strongly stationary.
However, for many purposes, strong stationarity is too much to ask for. Instead, we consider

the following weaker notion: Let X = (Xt)t∈T be a stochastic signal with a continuous state space
X. Then we say that X is weakly stationary (and write WS, for short) if it has the following two
properties:

1. The mean function mX(t) = E[Xt] is constant as a function of t:

mX(t) = µ, ∀t ∈ T . (4.6)

2. For any two times s, t ∈ T and any r ∈ R such that s+ r ∈ T and t + r ∈ T ,

RX(s, t) = RX(s+ r, t + r). (4.7)

Here, RX(s, t) = E[XsXt] is the autocorrelation function of X.
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This property is much weaker than strong stationarity: one can easily construct examples of
stochastic signals that are very nonstationary in the sense of (4.5), yet are weakly stationary. (Of
course, any strongly stationary process with a continuous state space is also weakly stationary.)
Now let us examine some implications of weak stationarity. While the definition applies to any T ,
we will focus on the easy case when T is closed under addition and subtraction: if s, t ∈ T , then
s + t ∈ T and s − t ∈ T . Then 0 ∈ T . In that case, from (4.6) we get µ = E[X0], and from (4.7) with
r = −t we get

E[X2
t ] = RX(t, t) = RX(0,0) = E[X2

0 ].

Thus, E[X2
t ] = σ2 for some σ ≥ 0. Now, if we use (4.7) with r = −s and r = −t, we have

RX(s, t) = RX(0, t − s) and RX(t, s) = RX(0, s − t).

Since RX(s, t) = RX(t, s), we conclude that RX(s, t) depends only on τ = t − s. Thus, for a weakly
stationary stochastic process X = (Xt)t∈T , we can overload the notation and write its autocorrelation
function as RX(τ). This really means that

RX(τ) = E[XtXt+τ ] = E[XtXt−τ ], ∀t,τ ∈ T

and, in particular, implies that RX(τ) = RX(−τ).
Before moving on, let us look at an example. Let A,B be two jointly distributed real-valued

random variables, and consider the following stochastic signal X = (Xt)t∈R:

Xt = Acosωt +Bsinωt (4.8)

(here, ω is a deterministic angular frequency, not to be confused with a generic element of some
probability space (Ω,F ,P)). This is an example of a deterministic signal with stochastic parameters.
What are the conditions on A and B for this signal to be weakly stationary? We claim that X is
weakly stationary if and only if the following three conditions are satisfied:

1. E[A] = E[B] = 0 (both A and B have zero mean).

2. Var[A] = Var[B] = σ2 (A and B have the same variance).

3. E[AB] = 0 (A and B are uncorrelated).

We will only prove the statement that if X is WS, then A and B have to satisfy the above conditions;
the converse will be a homework problem. So, suppose that X is WS. Then

mX(t) = E[Xt] = E[Acosωt +Bsinωt] = E[A]cosωt + E[B]sinωt,

and the only way for mX(t) to be a constant is to have E[A] = E[B] = 0, because otherwise it will
depend on t. This proves Item 1. Now, again by the WS assumption, E[X2

t ] = RX(0) must be a
constant. Since X0 = A and Xπ/2ω = B, we have E[X2

0 ] = E[A2] = Var[A] and E[X2
π/2ω] = E[B2] =
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Var[B] (we have used the fact that both A and B have zero mean). Thus, Var[A] = Var[B] = σ2 for
some σ ≥ 0. This proves Item 2. Finally, for any t,τ ∈ T we write

RX(t, t + τ) = E[XtXt+τ ]

= E [(Acosωt +Bsinωt) (Acosω(t + τ) +Bsinω(t + τ))]

= E[A2]cosωt cosω(t + τ) + E[B2]sinωt sinω(t + τ)

+ E[AB] (cosωt sinω(t + τ) + sinωt cosω(t + τ))

= σ2 cosωτ + E[AB]sinω(2t + τ),

where we have used trigonometric identities and the fact that E[A2] = E[B2] = σ2. We see that,
unless E[AB] = 0, RX(t, t + τ) will depend on both t and τ , which would violate the assumption that
X is WS. This proves Item 3.

As we will learn next, weak stationarity is preserved by linear time invariant (LTI) systems: if
X = (Xt)t∈R is a WS input to an LTI system, then the output Y = (Yt)t∈R is also WS, and its mean and
correlation functions can be explicitly computed from those of X and from the impulse response of
the system.

4.3 Systems with stochastic inputs: the LTI case

Consider an LTI system with impulse response h and fix a stochastic signal X = (Xt)t∈R. Then the
output signal Y = (Yt)t∈R is related to X via the convolution integral, as in (4.2):

Yt =
∫ ∞
−∞
h(t − τ)Xτdτ. (4.9)

Of course, this is purely formal, since each Xτ is a random variable, and it takes some care to
endow an integral like (4.9) with rirogous meaning. We will happily ignore all this fuss and just
assume that the above integral is well-defined. Nevertheless, it is still a random quantity, and may
not admit a closed-form expression. However, as we will now see, the output mean mY (t), the
input-output crosscorrelation RXY (s, t), and the output autocorrelation RY (s, t) can be expressed in
terms of the input mean mX(t), the input autocorrelation RX(s, t), and the impulse response h.

First, let’s do the mean:

mY (t) = E[Yt] = E
[∫ ∞
−∞
h(t − τ)Xτdτ

]
. (4.10)

In general, interchaning expectations and integrals is a delicate matter, but we will be cavalier
about it and just do it:

E
[∫ ∞
−∞
h(t − τ)Xτdτ

]
=

∫ ∞
−∞

E[h(t − τ)Xτ ]dτ =
∫ ∞
−∞
h(t − τ)E[Xτ ]dτ.

Now, E[Xτ ] =mX(τ), so, putting everything together, we arrise at the pleasing formula

mY (t) =
∫ ∞
−∞
h(t − τ)mX(τ)dτ ≡ h ∗mX(t). (4.11)
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That is, the output mean is given by the convolution of the input mean with the impulse response!
We immediately note that if mX(t) is constant, i.e., mX(t) = µX for all t, then mY (t) is also constant
and equal to

µY = µX

∫ ∞
−∞
h(t)dt.

Here, we assume that the integral of h over the entire real line exists and is finite. We can also
express this in terms of the transfer function H by noting that∫ ∞

−∞
h(t)dt =

∫ ∞
−∞
h(t)e−iωtdt

∣∣∣∣
ω=0

=H(0),

so we arrive at the following formula: if mX(t) = µX for all t, then mY (t) =H(0)µX .
Encouraged by our success, let’s compute the input-output crosscorrelation next:

RXY (s, t) = E[XsYt]

= E
[∫ ∞
−∞
h(t − τ)XsXτdτ

]
=

∫ ∞
−∞
h(t − τ)E[XsXτ ]dτ

=
∫ ∞
−∞
h(t − τ)RX(s,τ)dτ.

This almost looks like a convolution, except that RX is a function of two arguments. Note, however,
that we are integrating over the second argument of RX . So, we can write

RXY (s, t) = h ∗2 RX(s, t),

where the subscript 2 on the asterisk indicates that we convolve only over the second argument of
the input autocorrelation RX :

h ∗2 RX(s, t) 4=
∫ ∞
−∞
h(t − τ)RX(s,τ)dτ.

This simplifies considerably when X is weakly stationary: in that case, RX(s, t) = RX(t − s), and so

RXY (s, t) = h ∗2 RX(s, t)

=
∫ ∞
−∞
h(t − τ)RX(s,τ)dτ

=
∫ ∞
−∞
h(t − τ)RX(τ − s)dτ

= h ∗RX(t − s)
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is just the ordinary convolution. Now we note that RXY (s, t) depends only on t − s, so we can write
RXY (s, t) = RXY (t − s). Consequently, we arrive at the formula

RXY (τ) = h ∗RX(τ), (4.12)

where RXY (τ) = E[XtYt+τ ] for all t ∈ R. Thus, when the input X is weakly stationary, the input-
output crosscorrelation is given by the convolution of the impulse response and the input autocor-
relation!

Finally, let’s look at the output autocorrelation. Again, blithely interchaning the order of
expectation and integration, we have

RY (s, t) = E[YsYt]

= E
[∫ ∞
−∞
h(s − τ)Xτdτ

∫ ∞
−∞
h(t − τ ′)Xτ ′dτ ′

]
= E

[∫ ∞
−∞

∫ ∞
−∞
h(s − τ)h(t − τ ′)XτXτ ′dτdτ ′

]
=

∫ ∞
−∞

∫ ∞
−∞
h(s − τ)h(t − τ ′)E[XτXτ ′ ]dτdτ ′

=
∫ ∞
−∞

∫ ∞
−∞
h(s − τ)h(t − τ ′)RX(τ,τ ′)dτdτ ′ .

If we perform the integration over τ ′ first, we can recognize the ∗2 operation:∫ ∞
−∞

∫ ∞
−∞
h(s − τ)h(t − τ ′)RX(τ,τ ′)dτdτ ′ =

∫ ∞
−∞
h(s − τ)

(∫ ∞
−∞
h(t − τ ′)RX(τ,τ ′)dτ ′

)
︸                            ︷︷                            ︸

=h∗2RX (τ,t)

dτ

=
∫ ∞
−∞
h(s − τ)RXY (τ, t)dτ.

So, if we now define the “partial convolution” ∗1 over the first argument, we can write

RY (s, t) = h ∗1 RXY (s, t) = h ∗1 (h ∗2 RX) (s, t).

This deceptively simple-looking formula hides a lot of complexity. But, once again, things simplify
if X is weakly stationary. In that case, h ∗2 RX(s, t) = h ∗RX(t − s) = RXY (t − s), and therefore

h ∗1 (h ∗2 ∗RX) (s, t) =
∫ ∞
−∞
h(s − τ)RXY (τ, t)dτ

=
∫ ∞
−∞
h(s − τ)RXY (t − τ)dτ. (4.13)

Again, this integral looks very much like a convolution, but here we hit a snag. In general, a
convolution integral of two functions f and g will look like this:∫ ∞

−∞
f (t − τ)g(τ − s)dτ,
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i.e., if we add the arguments of f and g in the integrand, the integration variable τ will cancel,
and it is not hard to show that the integral is equal to f ∗ g(t − s). But if we add up the arguments
of h and RXY in the integrand of (4.13), we get (s − τ) + (t − τ) = s + t − 2τ , and τ most certainly
does not cancel! Fortunately, there is a nice hack out of this conundrum: given h, define another
function h̃ by setting h̃(t) 4= h(−t). For obvious reasons, we call h̃ the time reversal of h. Then, with
this definition, we can rewrite (4.13) as∫ ∞

−∞
h(s − τ)RXY (t − τ)dτ =

∫ ∞
−∞
h̃(τ − s)RXY (t − τ)dτ,

and behold: (τ − s) + (t−τ) = t− s, and so we can write h ∗1 (h ∗2RX)(s, t) = h̃ ∗h ∗RX(t− s). Thus, when
the input X is weakly stationary, the output autocorrelation is given by the double convolution:

RY (τ) = h̃ ∗ h ∗RX(τ), (4.14)

i.e., if the input X is weakly stationary with autocorrelation RX(τ), then the output Y is also
weakly stationary. Moreover, in that case the crosscorrelation RXY (s, t) also depends only on t − s,
so we say that the input and the output are jointly weakly stationary: each of them is WS, and
RXY (s, t) = RXY (t − s) [although be careful: RXY (t − s) = E[XsYt] , E[XtYs] = RXY (s − t)].

4.4 Input-output relations in the frequency domain: power spectral densities

No one likes to compute convolution integrals (even though it builds character), so we pass to the
frequency domain. Let X be a WS stochastic signal with autocorrelation RX(τ). The power spectral
density of X, denoted by SX , is simply the Fourier transform of RX :

SX(ω) 4= R̂X(ω) =
∫ ∞
−∞
RX(τ)e−iωτdτ. (4.15)

The autocorrelation function can be recovered from the power spectral density via the Fourier
inversion formula (4.4):

RX(τ) =
1

2π

∫ ∞
−∞
SX(ω)eiωτdω. (4.16)

The word “spectral” evokes frequency content, so this makes sense. But what do “power” and
“density” mean? If we think about Xt as a (random) current passing through a unit resistance, then
the voltage across the resistor is also equal to Xt, by Ohm’s law. Consequently, the dissipated power
at time t is equal to

(voltage at time t) · (current at time t) = X2
t .

Thus, we may think of E[X2
t ] as the average power dissipated at time t. Now, if X is WS, then

E[X2
t ] = E[XtXt] = RX(0). On the other hand, if we substitute τ = 0 into the Fourier inversion

formula (4.16), we get

E[X2
t ] = RX(0) =

1
2π

∫ ∞
−∞
SX(ω)dω. (4.17)
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Similarly, given two jointly WS stochastic signals X and Y , we define their cross-power spectral
density SXY as the Fourier transform of the crosscorrelation function RXY :

SXY (ω) = R̂XY (ω) =
∫ ∞
−∞
RXY (τ)eiωτdτ.

Using power spectral densities, we can obtain frequency-domain forms of the results of the
preceding section. For example, taking the Fourier transform of both sides of (4.12), we get

SXY (ω) =H(ω)SX(ω). (4.18)

Similarly, taking the Fourier transform of both sides of (4.14), we get

SY (ω) = H̃(ω)H(ω)SX(ω), (4.19)

where H̃ is the Fourier transform of the time-reversed impulse response h̃. However, we can express
H̃ in terms of H :

H̃(ω) =
∫ ∞
−∞
h̃(τ)e−iωτdτ

=
∫ ∞
−∞
h(−τ)e−iωτdτ

=
∫ ∞
−∞
h(τ)eiωτdτ

=H(−ω),

where in the penultimate line we have made the change of variable τ→−τ . Now, since h is real-
valued, we see that H̃(ω) =H(−ω) is just the complex conjugate of H(ω): H̃(ω) =H ∗(ω). Therefore,
(4.19) simplifies to

SY (ω) = |H(ω)|2SX(ω). (4.20)

Thus, when a WS stochastic signal is used as an input to an LTI system, the effect in the frequency
domain is to reshape the power spectral density in proportion to |H |2.

Example: white and colored noise. Consider a zero-mean WS stochastic signal Z with the flat
power spectral density SZ(ω) = q, where q > 0 is some fixed constant. By analogy with white visible
light that contains all spectral components, we call such a signal white noise with intensity q. The
autocorrelation function is then given by RZ(τ) = qδ(τ). Since Z is zero-mean,

RZ(τ) = CZ(τ) = E[ZtZt+τ ]

for any t,τ ∈ R. In this case, RZ(τ) = 0 for all τ > 0, i.e., Zt and Zt′ are uncorrelated for all t , t′.
Although white noise is a useful mathematical construction (for example, many stochastic signals
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of interest can be interpreted as outputs of deterministic systems driven by white-noise inputs), it
is unphysical. To see why, let us substitute SZ(ω) = q into (4.17) to get

E[Z2
t ] =

1
2π

∫ ∞
−∞
qdω = +∞.

That is, pure white noise has infinite average power! Of course, we can simply continue using it
while remaining mindful of its unphysical nature (just like we do with the unit impulse), or we can
develop various approximations. For example, it is often possible to consider stochastic signals
whose power spectra are flat and nonzero only in some band of frequencies. Thus, consider a WS
stochastic signal Z with

SZ(ω) =

q, −ω0 ≤ω ≤ω0

0, otherwise
, (4.21)

where q > 0 is the intensity parameter and ω0 > 0 is some cutoff frequency. Then

E[Z2
t ] =

1
2π

∫ ω0

−ω0

qdω =
qω0

π
,

which is finite. We can also compute the autocorrelation function of Z:

RZ(τ) =
1

2π

∫ ∞
−∞
SZ(ω)eiωτdω

=
q

2π

∫ ω0

−ω0

eiωτdω

=
q

2π
· 1

iτ
eiωτ

∣∣∣∣ω0

−ω0

=
q

πτ
· e

iω0τ − e−iω0τ

2i

=
q sinω0τ

πτ
.

Recalling the definition of the sinc function2

sinc(u) =

 sinπu
πu , u , 0

1, u = 0

we can write

RZ(τ) = 2qf0 sinc(2f0τ), (4.22)

where f0 = ω0/2π is the cutoff frequency in Hz. A plot of RZ with q = 5 and ω0 = 4 rad/s is shown
in Fig. 1. Note that because |RZ(τ)| > 0 for all τ , there are correlations between Zt and Zt+τ , but
they decay to zero as |τ | →∞.

2This is the engineer’s sinc function. The mathematician’s sinc function is sinc(u) = sinu
u .
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Figure 1: The sinc autocorrelation function.

The term “colored noise” refers to stochastic signals whose power spectra are roughly shaped
like the corresponding colors of the visible spectrum. For example, the term “pink noise” refers to
power spectra of the form S(ω) ∝ 1/ω. Later on, we will return to this noise model when discussing
flicker noise in electronic devices.

4.4.1 Properties of power spectral densities

The power spectral density SX of any WS stochastic signal X = (Xt)t∈R is real (i.e., SX(ω) ∈ R for all
ω), even (i.e., SX(−ω) = SX(ω) for all ω), and nonnegative (i.e., SX(ω) ≥ 0 for all ω).

Indeed, recall that SX is the Fourier transform of the autocorrelation function RX . The autocor-
relation function RX takes real values, and it is also even:

RX(−τ) = E[XtXt−τ ] = E[Xt+τXt] = RX(τ).

Therefore, using Euler’s formula, we have

SX(ω) =
∫ ∞
−∞
RX(τ)e−iωτdτ

=
∫ ∞
−∞
RX(τ)cosωτdτ + i

∫ ∞
−∞
RX(τ)sinωτdτ.

Since RX(τ) is even and sinωτ is odd, the second integral is identically zero, and we obtain the
formula

SX(ω) =
∫ ∞
−∞
RX(τ)cosωτdτ. (4.23)
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Since the integrand takes real values, SX(ω) ∈ R for all ω. Moreover, the integrand is even as a
function of ω, so SX is also an even function. This also implies that RX is given by

RX(τ) =
1

2π

∫ ∞
−∞
SX(ω)eiωτdω

=
1

2π

∫ ∞
−∞
SX(ω)cosωτdω+

i
2π

∫ ∞
−∞
SX(ω)sinωτdω

=
1

2π

∫ ∞
−∞
SX(ω)cosωτdω,

where we have used the same reasoning as before: SX(ω)sinωτ is an odd function of ω, so the
second integral is zero.

It remains to show that SX(ω) ≥ 0 for all ω. Let X be the input to a bandpass filter with the
transfer function

H(ω) =

1, ω0 ≤ |ω| ≤ ω1

0, otherwise
,

where ω0 ≤ω1 are arbitrary nonnegative constants. Let Y denote the output stochastic signal. Then

SY (ω) = |H(ω)|2SX(ω) =

SX(ω), ω0 ≤ |ω| ≤ ω1

0, otherwise
.

Now, using the Fourier inversion formula and the evenness of SX ,

RY (0) =
1

2π

∫ ∞
−∞
SY (ω)dω

=
1

2π

∫ −ω1

−ω0

SX(ω)dω+
1

2π

∫ ω1

ω0

SX(ω)dω

=
1
π

∫ ω1

ω0

SX(ω)dω.

Since RY (0) = E[Y 2
t ] ≥ 0, we see that∫ ω1

ω0

SX(ω)dω ≥ 0, ∀ω0,ω1. (4.24)

The only way for (4.24) to hold is if SX(ω) ≥ 0 for all ω.
In fact, for any function S of frequency ω which is real, even, nonnegative, and satisfies the

condition

a
4=
∫ ∞
−∞
S(ω)dω <∞,

we can construct a WS stochastic signal X, such that S = SX . To prove this, consider the following
stochastic signal:

Xt = cos(Ωt +Θ),

12
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where Ω and Θ are two mutually independent random variables. Let us assume that a = π
(otherwise, we can simply rescale S). We will take Θ ∼ Uniform(0,2π), and we will choose the
pdf fΩ of Ω later. First, let us prove that X is WS. For that, we have to compute its mean and
autocorrelation functions. Since Ω and Θ are independent, we can write

mX(t) = E[Xt]

= E[cos(Ωt +Θ)]

=
1

2π

∫ ∞
−∞

∫ 2π

0
fΩ(ω)cos(ωt +θ)dθdω

=
1

2π

∫ ∞
−∞
fΩ(ω)

(∫ 2π

0
cos(ωt +θ)dθ

)
dω.

The integral in parentheses is equal to zero, so mX(t) = 0 for all t. For the autocorrelation function,
using the trigonometric identity cosu cosv = 1

2 [cos(u + v) + cos(u − v)], we have

RX(t, t + τ) = E[XtXt+τ ]

= E[cos(Ωt +Θ)cos(Ω(t + τ) +Θ)]

=
1
2

E [cos(2Ωt +Ωτ +Θ) + cos(Ωτ)]

=
1
2

E[cos(2Ωt +Ωτ +Θ)] +
1
2

E[cosΩτ].

Using the same reasoning as in the derivation of mX , we see that the first expectation is identically
zero, and therefore

RX(t, t + τ) =
1
2

E[cosΩτ]. (4.25)

Since mX = 0 and RX(t, t + τ) depends only on τ , X is indeed WS. Now we will pick fΩ to guarantee
that SX = S. To that end, we will use the Fourier inversion formula

RX(τ) =
1

2π

∫ ∞
−∞
SX(ω)cos(ωτ)dω

(recall that SX is even). On the other hand, from (4.25) we have

RX(τ) =
1
2

∫ ∞
−∞
fΩ(ω)cos(ωτ)dω.

In particular,

RX(0) =
1
2

=
1

2π

∫ ∞
−∞
SX(ω)dω

Let us take fΩ(ω) = S(ω)
π . This function is nonnegative and integrates to 1. Therefore, it is a valid

pdf. By uniqueness of Fourier transforms, we have ensured that S = R̂X , and therefore SX = S.

13
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4.5 Gaussian stochastic signals and Bussgang’s theorem

An important class of stochastic signals consists of Gaussian stochastic signals (or Gaussian processes).
To define a Gaussian stochastic signal, we first recall the definition of a Gaussian random variable:
A random variable X is called Gaussian if its characteristic function ΦX(u) 4= E[eiuX] has the form

ΦX(u) = exp
(
iµu − u

2σ2

2

)
(4.26)

for some µ ∈ R and σ2 ≥ 0. It can be shown then that µ = E[X] and σ2 = Var[X] (in the degenerate
case σ = 0, X = µ with probability one). When σ > 0, the pdf of X is obtained by taking the inverse
Fourier transform of ΦX :

fX(x) =
1

2π

∫ ∞
−∞

ΦX(u)e−iuxdu

=
1

√
2πσ2

exp
(
−

(x −µ)2

2σ2

)
.

When σ = 0, X does not have a pdf.
Now consider a random vector, i.e., a stochastic signal of the form X = (Xt)t∈T with T = {1, . . . ,n}.

We can represent such signals by column vectors, as in

X =


X1
X2
...
Xn

 .
In the same way, we can represent the mean and the autocovariance functions of X:

mX =


mX(1)
mX(2)
...

mX(n)

 and CX =


CX(1,1) CX(1,2) . . . CX(1,n)
CX(2,1) CX(2,2) . . . CX(2,n)

...
...

. . .
...

CX(n,1) CX(n,2) . . . CX(n,n)

 ,
where, as usual, MX(t) = E[Xt] and CX(s, t) = E[XsXt]−E[Xs]E[Xt]. The n×n covariance matrix CX is
symmetric, since CX(s, t) = CX(t, s), and the diagonal entries are equal to the variances of the Xt’s:

CX(t, t) = E[X2
t ]− (E[Xt])

2 = Var[Xt].

Now let u = (u1, . . . ,un)T be a fixed deterministic vector, and consider the scalar random variable
Z = uTX = u1X1 + . . .+ unXn. Geometrically, Z is the projection of the random vector X onto the
deterministic vector u. We can easily compute its mean and variance:

E[Z] = E

 n∑
t=1

utXt

 =
n∑
t=1

utE[Xt] =
n∑
t=1

utmX(t) = uTmX

14



Intro to Stochastic Systems (Spring 17) Lectures 9–14

and

Var[Z] = E[Z2]− (EZ)2

=
n∑
s=1

n∑
t=1

(E[usutXsXt]−usutE[Xs]E[Xt])

=
n∑
s=1

n∑
t=1

usut (E[XsXt]−E[Xs]E[Xt])

=
n∑
s=1

n∑
t=1

usutCX(s, t)

= uTCXu.

We now introduce the following definition: we say that X is a Gaussian random vector (or that
X1, . . . ,Xn are jointly Gaussian random variables) if the scalar random variable Z = uTX is Gaussian
for each choice of the vector of coefficients u ∈ Rn. In light of our definition of a Gaussian random
variable, this is equivalent to the following: X is a Gaussian random vector if, for any u ∈ Rn, the
characteristic function ΦZ = ΦuTX of Z = uTX takes the form

ΦZ(α) = exp
(
iαE[Z]− α

2Var[Z]
2

)
= exp

(
iαuTmX −

α2uTCXu
2

)
for all α ∈ R. Note that

ΦuTX(α) = E[eiαuTX] = E[ei(αu)TX] = ΦαuTX(1),

so specifying the characteristic functions of all linear combinations uTX is equivalent to specifying
the joint characteristic function of X, which is a function of a vector argument u ∈ Rn and takes the
form

ΦX(u) ≡ ΦX1,...,Xn(u1, . . . ,un) 4= E[eiuTX]. (4.27)

Just like the characteristic function of a scalar random variable X uniquely specifies the distribution
of X, the joint characteristic function of a random vector X = (X1, . . .Xn)T uniquely specifies the
joint distribution of its coordinates X1, . . . ,Xn. In particular, if the Xt’s have a joint pdf, then it is
given by the multidimensional Fourier inversion formula

fX(x) = fX1,...,Xn(x1, . . . ,xn) =
1

(2π)n

∫ ∞
−∞
. . .

∫ ∞
−∞

ΦX(u)e−iuTXdu1 . . .dun. (4.28)

Because ΦX(u) = ΦuTX(1), we see that if we know the probability distributions of all of its projections
Z = uTX, u ∈ Rn, then we know the joint probability distribution of X1, . . . ,Xn (this is referred to

15
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as the Cramèr–Wold theorem). Consequently, a random vector X is Gaussian if and only if its joint
characteristic function takes the form

ΦX(u) = exp
(
iuTmX −

1
2
uTCXu

)
, u ∈ Rn. (4.29)

Along the way, we have established a nice fact: the projection of a Gaussian random vector onto a
deterministic vector is always Gaussian.

Important! You should always keep in mind the crucial distinction between a Gaussian random
vector and a vector of Gaussian random variables. It is easy to construct examples of random vectors
X = (X1, . . . ,Xn)T , where each Xt is Gaussian, yet X1, . . . ,Xn are not jointly Gaussian (you will see
such an example in the homework). If X1, . . . ,Xn are not jointly Gaussian, then the projection uTX
may not be Gaussian.

We are now ready to define a general Gaussian stochastic signal: a stochastic signal X = (Xt)t∈T
is Gaussian if, for any n ∈ N and any t1, . . . , tn ∈ T , the random variables Xt1 , . . . ,Xtn are jointly
Gaussian. That is, their joint characteristic function has the form

ΦXt1 ,...,Xtn
(u1, . . . ,un) = exp

i
n∑
k=1

ukmX(tk)−
1
2

n∑
j=1

n∑
k=1

ujukCX(tj , tk)

 . (4.30)

This implies that a weakly stationary Gaussian stochastic signal is, in fact, strongly stationary.
Indeed, suppose that X is WS. Then µX(t) = µ for all t, and CX(s, t) = CX(t − s) for all s, t. Using
these facts in (4.30), we obtain

ΦXt1 ,...,Xtn
(u1, . . . ,un) = exp

iµ
n∑
k=1

uk −
1
2

n∑
j=1

n∑
k=1

ujukCX(tk − tj )

 . (4.31)

Now fix an arbitrary τ ∈ R and consider the ranodm variables Xt1+τ , . . . ,Xtn+τ . Since µX(t) is
constant, and since CX(s + τ, t + τ) = CX(t − s) their joint characteristic function is also given by
(4.31):

ΦXt1+τ ,...,Xtn+τ
(u1, . . . ,un) = exp

iµ
n∑
k=1

uk −
1
2

n∑
j=1

n∑
k=1

ujukCX(tk − tj )

 . (4.32)

Thus, for any choice of t1, . . . , tn and τ , (Xt1 , . . . ,Xtn) and (Xt1+τ , . . . ,Xtn+τ ) have the same joint char-
acteristic function and hence the same distribution. Therefore X is strongly stationary. For this
reason, we can just say “stationary” when dealing with Gaussian stochastic signals.

Now that we have collected some background about Gaussian stochastic signals, we can state
and prove a remarkable result called Bussgang’s theorem.3 Let X be a stationary Gaussian stochastic

3J.J. Bussgang, “Cross-correlation function of amplitude-distorted Gaussian signals," MIT Research Laboratory of
Electronics, Technical Report 216, March 1952.
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signal with zero mean, and let Y be obtained by passing X through a memoryless nonlinearity.
That is, for each t ∈ R, we have Yt = g(Xt), where g : R→ R is a fixed transformation. Suppose that
g is differentiable4 and has moderate growth at infinity, i.e.,

lim
|x|→∞

g(x)e−ax
2

= 0, ∀a > 0. (4.33)

For example, any polynomial in x would do. Bussgang’s theorem gives the following expression for
the crosscorrelation function between X and Y :

RXY (t, t + τ) = E[XtYt+τ ] = K ·RX(τ), (4.34)

where

K = E[g ′(X0)].

Since RXY (t, t + τ) depends only on τ , we can write RXY (τ) = KRX(τ) instead. The remarkable
thing about (4.34) is its simplicity, despite the fact that g may be highly nonlinear and the output
stochastic signal Y may not even be Gaussian. Before giving the proof of (4.34), let us take a look
at a couple of examples.

Hard limiter. Consider the following nonlinear transformation:

g(x) =


−1, x < 0

0, x = 0

1, x > 0

.

We can write g as a difference of two unit-step functions: g(x) = u(x)−u(−x). Therefore, g ′(x) = 2δ(x).
Let X be a stationary Gaussian stochastic signal, and let f0 denote the pdf of X0. Then

f0(x) =
1√

2πRX(0)
e−x

2/2RX (0),

and therefore

E[g ′(X0)] = 2
∫ ∞
−∞
f0(x)δ(x)dx

= 2f0(0)

=

√
2

πRX(0)
.

Hence, Bussgang’s theorem gives

RXY (τ) =

√
2

πRX(0)
RX(τ).

4We understand differentiability in the generalized sense and allow functions like the unit step or the unit ramp.
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Half-wave rectifier. Consider

g(x) = max{x,0} =

0, x < 0

x, x ≥ 0
.

Then g ′(x) = u(x), so for any zero-mean Gaussian random variable X we have

E[g ′(X)] = E[u(X)] =
∫ ∞

0
fX(x)dx =

1
2
.

Consequently, Bussgang’s theorem gives RXY (τ) = 1
2RX(τ).

Now we give the proof of Bussgang’s theorem. First, we note that it is equivalent to the following
statement: Let U and V be two jointly Gaussian random variables with zero mean. Then for any g
satisfying (4.33) we have

E[Ug(V )] = Cov(U,V )E[g ′(V )]. (4.35)

We obtain (4.34) by applying (4.35) to U = Xt and V = Xt+τ . Since X is zero-mean, Cov(Xt ,Xt+τ ) =
CX(τ) = RX(τ), and, since X is stationary, E[g ′(Xt+τ )] = E[g ′(X0)]. Thus, we proceed to prove (4.35).
We will derive it from another important result, known as Stein’s identity: Let g be a differentiable
function satisfying (4.33), and let U be a zero-mean Gaussian random variable with variance σ2.
Then

E[Ug(U )] = σ2 E[g ′(U )]. (4.36)

Remark on Stein’s identity. The importance of Stein’s identity (4.36) lies in the fact that it actually
fully characterizes the Gaussian distribution: It can be proved that any zero-mean, unit-variance
random variable U , such that

E[Ug(U )] = E[g ′(U )]

holds for all smooth g, is Gaussian. This can be pushed further to imply that any random variable
U with zero mean and unit variance, such that

E[Ug(U )− g ′(U )] ≈ 0

for all smooth g, is “close to Gaussian."

To prove (4.36), we note the following about the pdf of U :

f ′U (u) =
1

√
2πσ2

d
du
e−u

2/2σ2
= − u

σ2 fU (u).

Therefore,

E[Ug(U )] =
∫ ∞
−∞
ug(u)fU (u)du

= −σ2
∫ ∞
−∞
g(u)f ′U (u)du.

18
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Integrating by parts, we get

E[Ug(U )] = −σ2g(u)fU (u)
∣∣∣∣∞−∞ + σ2

∫ ∞
−∞
g ′(u)fU (u)du.

Since g satisfies (4.33), the first term on the right-hand side is identically zero, and we obtain

E[Ug(U )] = σ2
∫ ∞
−∞
g ′(u)fU (u)du = σ2 E[g ′(U )].

Now we will use Stein’s identity to prove (4.35). To that end, we first use a trick which you can
think of as “Gram-Schmidt orthogonalization for Gaussians:” Given the pair (U,V ), define the
random variable

Ṽ
4= V − c

σ2
U

U,

where c = Cov(U,V ) = E[UV ] and σ2
U = Var[U ]. Since U and V are jointly Gaussian with zero

mean, Ṽ is also Gaussian with zero mean. Moreover, U and Ṽ are uncorrelated:

E[UṼ ] = E
[
U

(
V − c

σ2
U

U

)]
= E[UV ]− c

σ2
U

E[U2]

= E[UV ]− c

σ2
U

σ2
U

= 0.

As you will prove in the homework, if two jointly Gaussian random variables are uncorrelated,
then they are also independent. Therefore, U and Ṽ are independent. Using this fact, we can write

E[Ug(V )] = E
[
Ug

(
Ṽ +

c

σ2
U

U
)]

=
∫ ∞
−∞

∫ ∞
−∞
ug

(
ṽ +

c

σ2
U

u
)
fU (u)fṼ (ṽ)dudṽ.

We will first integrate over u, and then over ṽ:∫ ∞
−∞

∫ ∞
−∞
ug

(
ṽ +

c

σ2
U

u
)
fU (u)fṼ (ṽ)dudṽ =

∫ ∞
−∞
fṼ (ṽ)

[∫ ∞
−∞
ug

(
ṽ +

c

σ2
U

u
)
fU (u)du

]
dṽ

=
∫ ∞
−∞
fṼ (ṽ)E

[
Ug

(
ṽ +

c

σ2
U

U
)]

dṽ. (4.37)

Using Stein’s identity and the chain rule for differentiation, we can rewrite the expectation in (4.37)
as follows:

E
[
Ug

(
ṽ +

c

σ2
U

U
)]

= σ2
U ·

c

σ2
U

E
[
g ′
(
ṽ +

c

σ2
U

U
)]

= cE
[
g ′
(
ṽ +

c

σ2
U

U
)]
.
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Substituting this expression back into (4.37), we get

E[Ug(V )] = c
∫ ∞
−∞
fṼ (ṽ)E

[
g ′
(
ṽ +

c

σ2
U

U
)]

dṽ

= cE
[
g ′
(
Ṽ +

c

σ2
U

U
)]

= cE[g ′(V )]

= Cov(U,V ) ·E[g ′(V )],

which proves (4.35) and thus Bussgang’s theorem.

4.6 Poisson point processes and Campbell’s theorem

Gaussian processes provide a basic model of stochastic phenomena involving continuously fluctu-
ating quantities. Poisson point processes, on the other hand, serve as a good model of phenomena
involving discrete events occurring at random times. Recall that a Poisson point process with rate
λ is a discrete-time stochastic signal (Tk)k∈N, where the random arrival (or event occurrence) times
0 < T1 < T2 < T3 < . . . are such that the interarrival times Zk = Tk − Tk−1 (with the initial condition
T0 = 0) are i.i.d. Exp(λ) random variables. Alternatively, if for all 0 ≤ a ≤ b we let

N (a,b) 4= #
(
points Tk in the interval (a,b]

)
,

then N (a,b) ∼ Pois(λ(b − a)), and N (a,b) is independent of N (c,d) if (a,b)∩ (c,d) = ∅. Moreover, for
any r ∈ R such that a+ r ≥ 0 and b + r ≥ 0, N (a+ r,b + r) has the same distribution as N (a,b). This is
just another way of saying that the Poisson counting process

Nt =N (0, t) =
∞∑
k=1

u(t − Tk), (4.38)

where u(·) is the unit step function, has independent and stationary increments.
We can also associate each arrival with a unit impulse and form the stochastic signal

Xt =
∞∑
i=1

δ(t − Ti). (4.39)

If X = (Xt)t≥0 is an input to an LTI system with impulse response h, then the corresponding output
is given by

Yt =
∞∑
i=1

h(t − Ti). (4.40)

This type of stochastic signal is a model of shot noise in electronic and optical devices, which is a
manifestation of the discrete nature of charge carriers or photons. In that context, h describes the
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response of the device to individual arrivals. We will look at shot noise in more detail later; for
now, we will state and prove a useful result, known as Campbell’s theorem. The shot noise process Y
has the mean

mY = λ
∫ ∞
−∞
h(τ)dτ = λH(0) (4.41)

and the variance

Var[Yt] = λ
∫ ∞
−∞
h2(τ)dτ. (4.42)

Let us first prove (4.41). Since

Yt =
∫ ∞
−∞
h(t − τ)Xτ dτ, (4.43)

we can apply the formula (4.10):

E[Yt] = E
[∫ ∞
−∞
h(t − τ)Xτdτ

]
.

Interchanging the integral and the expectation, we can write

E[Yt] =
∫ ∞
−∞
h(t − τ)E[Xτ ]dτ, (4.44)

so now we need to compute the mean mX(τ). Since d
dtu(t) = δ(t), we can view the stochastic signal

X as the result of passing the Poisson counting process N through a differentiator:

Xt =
d
dt

∞∑
i=1

u(t − Ti) =
d
dt
Nt . (4.45)

Since E[Nt] = λt, we have

E[Xt] = E
[

d
dt
Nt

]
=

d
dt

E[Nt] = λ

(once again, we have been somewhat cavalier about interchanging the order of expectation and
differentiation, but all of these steps can be made rigorous using tools from the theory of point
processes). Substituting this into (4.44), we get (4.41). Now we prove (4.42). Using the definition
of variance and (4.41), we have

Var[Yt] = E[Y 2
t ]− (E[Yt])

2

= E[Y 2
t ]−λ2

(∫ ∞
−∞
h(τ)dτ

)2

, (4.46)
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so now we need to compute E[Y 2
t ]. Using (4.43), we can write

E[Y 2
t ] = E

[(∫ ∞
−∞
h(t − τ)Xτdτ

)(∫ ∞
−∞
h(t − τ ′)Xτ ′dτ ′

)]
= E

[∫ ∞
−∞

∫ ∞
−∞
h(t − τ)h(t − τ ′)XτXτ ′dτdτ ′

]
=

∫ ∞
−∞

∫ ∞
−∞
h(t − τ)h(t − τ ′)E[XτXτ ′ ]dτdτ ′ . (4.47)

Once again, we use (4.45):

E[XτXτ ′ ] = E
[
∂2

∂τ∂τ ′
NτNτ ′

]
=

∂2

∂τ∂τ ′
E[NτNτ ′ ]

=
∂2

∂τ∂τ ′
RN (τ,τ ′). (4.48)

The autocorrelation function of the Poisson process with rate λ is given by

RN (s, t) = λ2st +λmin{s, t}

(exercise: verify this!), and therefore

∂2

∂s∂t
RN (s, t) =

∂2

∂s∂t

(
λ2st +λmin{s, t}

)
=
∂
∂s

(
λ2s+λ

∂
∂t

min{s, t}
)
.

For a fixed value of s,

min{s, t} =

s, t > s

t, t ≤ s
,

from which it follows that

∂2

∂s∂t
min{s, t} = ∂

∂s
u(s − t) = δ(s − t).

Consequently,

∂2

∂s∂t
RN (s, t) = λ2 +λδ(s − t).
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Using this in (4.48) and (4.47), we have

E[Y 2
t ] =

∫ ∞
−∞

∫ ∞
−∞
h(t − τ)h(t − τ ′)

[
λ2 +λδ(τ − τ ′)

]
dτdτ ′

= λ2
(∫ ∞
−∞
h(τ)dτ

)2

+λ
∫ ∞
−∞

∫ ∞
−∞
h(t − τ)h(t − τ ′)δ(τ − τ ′)dτdτ ′

= λ2
(∫ ∞
−∞
h(τ)dτ

)2

+λ
∫ ∞
−∞
h2(τ)dτ.

Substituting this expression into (4.46), we obtain (4.42).

4.7 Markov chains and linear systems

Another probabilistic context in which linear systems arise is the evolution of the probability
distribution of the state of a Markov chain. Specifically, given a Markov chain X = (Xt)t∈Z+

, if we
denote by pt the probability distribution of its state at time t, i.e., pt(x) = P[Xt = x] for each x in the
state space X, then

pt+1 = ptM. (4.49)

Here, M = [M(x,y)]x,y∈X is the matrix of one-step transition probabilities of the chain.
As we already had seen through the example of the PageRank algorithm, a wide variety of

algorithms in signal processing and machine learning can be viewed as iterated applications of the
transformation (4.49). We will now see another example of such an algorithm, the so-called average
consensus (or linear agreement dynamics). The idea is as follows. Suppose we have a finite number
n of entities (e.g., robots or sensors in a sensor network). We will refer to these entities as agents.
Label the agents by the elements the set X = {1, . . . ,n}. With each x ∈ X, we associate a real number
f0(x). Let us stack them into a column vector f0 = (f0(1), . . . , f0(n))T . We will think of f0(x) as the
initial observation at x. Suppose that each agent can exchange real-valued messages with a subset of
the agents. This defines a communication network. For example, Figure 2 shows a ring network with
5 agents. For each x, let N (x) denote the set of neighbors of x in the network. We assume that the
communication goes both ways, i.e., if y ∈N (x), then x ∈N (y). For example, in Figure 2, we have

N (1) = {2,5},N (2) = {1,3},N (3) = {2,4},N (4) = {3,5},N (5) = {1,4}.

The goal is for all the agents to learn the average value of everyone’s observations,

a =
1
n

∑
x∈X

f0(x).

The average consensus algorithm accomplishes this as follows. We pick an n × n matrix M =
[M(x,y)]x,y∈X with the following properties:

1. Nonnegativity – M(x,y) ≥ 0 for all x,y.
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Figure 2: Ring network consisting of 5 agents.

2. Network conformity – M(x,y) , 0 only if x = y or if x ∈N (y).

3. Double Markov property –
∑
y∈XM(x,y) = 1 and

∑
x∈XM(x,y) = 1 for all x,y.

The average consensus algorithm generates a sequence of column vectors (ft)t∈Z+
starting with the

given initial condition via

ft+1 =Mft . (4.50)

We will see that, under certain conditions on M, each ft(x) will converge to a. Before getting to that,
though, let us discuss some properties of the consensus algorithm.

First of all, note that, for each x ∈ X,

ft+1(x) =
∑
y∈X

M(x,y)ft(y)

=M(x,x)ft(x) +
∑
y∈N (x)

M(x,y)ft(y).

Thus, ft+1(x) depends only on the coordinates of ft held by agent x and by the neighobrs of agent x.
Secondly, for each t define

at
4=

1
n

∑
x∈X

ft(x).

Then

at = a, ∀t = 0,1,2, . . . . (4.51)
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Indeed, a0 = a, and, using the double Markov property of M, we can write

at+1 =
1
n

∑
x∈X

ft+1(x)

=
1
n

∑
x∈X

∑
y∈X

M(x,y)ft(y)

=
1
n

∑
y∈X

(∑
x∈X

M(x,y)
)
ft(y)

=
1
n

∑
y∈X

ft(y)

= at .

Thus, the consensus algorithm preserves averages.
With these two observations at hand, we will now show that, under certain conditions on M,

the average consensus algorithm (4.50) converges. To quantify convergence, let us introduce the
following function of an arbitrary column vector f = (f (1), . . . , f (n))T :

V (f ) 4=
1
n

∑
x∈X

(f (x)− a)2 . (4.52)

This function can be interpreted geometrically as follows: If we define the Euclidean norm of a
vector f by

‖f ‖ =

√∑
x∈X

f 2(x)

then
V (f ) =

1
n
‖f − ae‖2,

where e = (1,1, . . . ,1)T is the column vector of all ones. That is, V (f ) is the square of the distance
between the points f and ae, normalized by the number of agents n. Clearly, V (f ) ≥ 0, and V (f ) = 0
if and only if f (x) = a for all x. Thus, if we can show that V (ft) → 0 as t → ∞, then we will
be able to conclude that each coordinate of ft indeed converges to the average a. What is more,
we will prove that, under certain conditions on M, V (ft+1) < V (ft), unless ft = ae, in which case
V (ft+1) = V (ft) = 0.

To proceed, let us expand the difference V (ft+1)−V (ft):

V (ft+1)−V (ft) =
1
n

(
‖ft+1 − ae‖2 − ‖ft − ae‖2

)
=

1
n

∑
x∈X

(
f 2
t+1(x)− 2aft+1(x) + a2 − f 2

t (x) + 2aft(x)− a2
)

=
1
n

∑
x∈X

(
f 2
t+1(x)− f 2

t (x)
)

+
2a
n

∑
x∈X

(ft(x)− ft+1(x)) . (4.53)
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Now, the second term in (4.53) is equal to a(at+1 − at), which is equal to zero by (4.51). The first
term, on the other hand, is equal to

1
n

(
‖ft+1‖2 − ‖ft‖2

)
=

1
n

(
‖Mft‖2 − ‖ft‖2

)
.

Thus, we obtain the formula

V (ft+1)−V (ft) =
1
n
‖Mft‖2 −

1
n
‖ft‖2, (4.54)

and therefore we are led to study the relationship between the norms ‖Mf ‖ and ‖f ‖ for an arbitrary
column vector f . First, we note that Me = e. Indeed,

(Me)(x) =
∑
y∈X

M(x,y) = 1.

Thus, if f = ce for any c ∈ R, then Mf = f , and so ‖Mf ‖ = ‖f ‖. Secondly, a simple calculation shows
that

‖Mf ‖2 − ‖f ‖2 =

∥∥∥∥∥∥M
(
f −

f T e

n
e

)∥∥∥∥∥∥2

−
∥∥∥∥∥∥f − f T en e

∥∥∥∥∥∥2

. (4.55)

Thus, we can assume, without loss of generality, that f T e = 0. Define the following quantity:

γ(M) 4= min
‖f ‖2 − ‖Mf ‖2

‖f ‖2
, (4.56)

where the minimum is over all nonzero column vectors f that satisfy f T e = 0. This quantity is
referred to as the spectral gap of M, for reasons that will be explained later on. Now let us get back
to the consensus algorithm. Suppose that ft , ae. Then the vector gt = ft −ae is nonzero and satisfies

gTt e =
∑
x∈X

gt(x)

=
∑
x∈X

ft(x)−na

= n (at − a)
= 0.

Therefore, using the definition of γ(M) in (4.56) we can write

V (ft+1)−V (ft) =
1
n

(
‖Mft‖2 − ‖ft‖2

)
=

1
n

(
‖M(ft − ae)‖2 − ‖ft − ae‖2

)
≤ −γ(M)

1
n
‖ft − ae‖2

= −γ(M)V (ft).
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Rearranging, we obtain

V (ft+1) ≤ (1−γ(M))V (ft). (4.57)

We will now use this inequality to analyze the convergence of average consensus.
To start with, we claim that γ(M) ∈ [0,1], which implies that V (ft+1) ≤ V (ft) for each t. To see

this, let f be an arbitrary column vector. Then

‖Mf ‖2 =
∑
x∈X

∣∣∣∣∑
y∈X

M(x,y)f (y)
∣∣∣∣2. (4.58)

Recall the Cauchy–Schwarz inequality: for any k pairs of real numbers (a1,b1), . . . , (ak ,bk),

∣∣∣∣ k∑
i=1

aibi

∣∣∣∣ ≤
√√√√ k∑

i=1

a2
i

k∑
j=1

b2
j . (4.59)

Then, for any x ∈ X, ∣∣∣∣∑
y∈X

M(x,y)f (y)
∣∣∣∣2 =

∣∣∣∣∑
y∈X

√
M(x,y) ·

√
M(x,y)f (y)

∣∣∣∣2
≤

∑
y∈X

M(x,y) ·
∑
y∈X

M(x,y)f 2(y)

=
∑
y∈X

M(x,y)f 2(y),

where the second step is by (4.59), while the third line uses the Markov property ofM. Substituting
this into (4.58), we obtain

‖Mf ‖2 ≤
∑
x∈X

∑
y∈X

M(x,y)f 2(y)

=
∑
y∈X

(∑
x∈X

M(x,y)
)
f 2(y)

=
∑
y∈X

f 2(y)

= ‖f ‖2,

where we have used the symmetry and the Markov property of M. This shows that ‖Mf ‖2 ≤ ‖f ‖2
for any f . Therefore, 0 ≤ ‖f ‖2 − ‖Mf ‖2 ≤ ‖f ‖2, and so γ(M) ∈ [0,1], as claimed. This shows that
each iteration of the average consensus algorithm brings the coordinates of ft closer to the average
a, but it does not imply that ft converges to ae as t→∞. To show that, we need stronger conditions
that have to do wtih the eigenvalues of M2 (the square of M). Recall that the eigenvalues of a square
matrix A are the roots of the characteristic polynomial

det(A−λI) = 0,
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where I is the identity matrix of the same shape as A, and that any vector f that satisfies Af = λf
is an eigenvector of A with eigenvalue λ. The set of all eigenvalues of A is called the spectrum of A.
Since any degree-n polynomial with real coefficients has n complex roots (possibly repeated), the
spectrum of A is a finite subset of C. However, if A is symmetric, i.e., A = AT , then it has only real
eigenvalues. Moreover, if A is positive, i.e., if f TAf ≥ 0 for all vectors f , then all eigenvalues of A
are nonnegative.

Let us now apply these considerations to the matrix M2. This matrix is obviously symmetric
(because M is), and it is also positive. Indeed, for any column vector f we have

f TM2f = (Mf )TMf = ‖Mf ‖2 ≥ 0.

Hence, all eigenvalues of M2 are real and nonnegative. In fact, the spectrum of M2 is contained in
the unit interval [0,1]. To see this, suppose that λ is a nonzero eigenvalue of M2, with eigenvector
f , 0. Then

‖f ‖2 ≥ ‖Mf ‖2 = λ2‖f ‖2,

which gives λ2 ≤ 1. Since λ ≥ 0, it must be the case that λ ∈ [0,1]. Moreover, λ = 1 is an eigenvalue:
since Me = e, we have M2e =M(Me) =Me = e. Now we are finally ready to state the following key
result:

Suppose that M is such that any eigenvector of M with eigenvalue 1 is proportional
to e. Then 1−γ(M) is equal to the second largest eigenvalue of M2, and consequently
1−γ(M) < 1.

To see why γ(M) is related to the eigenvalues of M2 in this way, let f be any of its eigenvectors
with eigenvalue λ < 1. We know that f is not proportional to e, by assumption. What is more, we
claim that c = f T e = 0. Suppose not. Note that we can write f = c

ne + g, where g = f − c
ne. Then

gT e = f T e− cne
T e = c−c = 0, i.e., g is orthogonal to any nonzero vector proportional to e. By linearity

and the fact that M2e = e, we have

M2f =M2
( c
n
e+ g

)
=
c
n
M2e+M2g

=
c
n
e+M2g.

On the other hand, we have

M2f = λf =
λc
n
e+λg

This implies that c
ne +M2g = λc

n e +λg. Since gT e = 0 and (M2g)T e = gTM2e = gT e = 0, it follows
that λ = 1, which is a contradiction unless c = 0. Hence, if M2f = λf with λ < 1, then f T e = 0.
Therefore,

γ(M) ≤
‖f ‖2 − ‖Mf ‖2

‖f ‖2
= 1−λ,
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or, equivalently, λ ≤ 1−γ(M). On the other hand, let λ∗ be the second largest eigenvalue of M2.
Then any nonzero vector f with f T e = 0 must satisfy the inequality ‖Mf ‖2 ≤ λ∗‖f ‖2 (why?), which
would imply that

γ(M) = min
{
‖f ‖2 − ‖Mf ‖2

‖f ‖2
: f , 0, f T e

}
≥ 1−λ∗.

Since we also have 1−λ∗ ≤ γ(M), we conclude that 1− γ(M) = λ∗ < 1. Now we see why we have
called γ(M) the spectral gap: the spectrum (i.e., the set of all eigenvalues) of M2 is contained in
the set [0,1−γ(M)]∪ {1}, and therefore γ(M) is the gap between the largest and the second largest
eigenvalues of M2. Thus, if M has the spectral gap property,

V (ft) ≤ (1−γ(M))V (ft−1) ≤ . . . ≤ (1−γ(M))tV (f0),

where 1−γ(M) ∈ [0,1). Thus, as t→∞,

V (ft) =
1
n
‖ft − ae‖2→ 0,

and the convergence is exponentially fast. This type of analysis occurs quite often in the context of
iterative algorithms, and can be summarized as follows:

• We have a function V (f ) that assigns a nonnegative number to each column vector f , and is
equal to zero if and only if f = ae.

• V (ft) = 1
n‖ft − ae‖

2 is a measure of progress of the algorithm towards the goal of each agent
having an accurate estimate of the average a = 1

nf
T

0 e.

• Each iteration of the algorithm strictly decreases V : V (ft+1) ≤ (1−γ)V (ft), where 1−γ is a
nonnegative constant strictly smaller than 1.

Then it follows that, as we run more and more iterations, the vectors ft converge to ae, which
corresponds to the ideal situation when each agent knows the average value a exactly. In general,
if f0 is not proportional to e, then ft , ae for any t (unless γ(M) = 1), but, as t→∞, |ft(x)− a| → 0
exponentially fast for each x ∈ X. This method is referred to as the method of Lyapunov (or potential)
functions — in many cases where we wish to prove that the state ft of some iterative algorithm
converges to some desired steady state f∗, we can find a function V (f ) that has the same three
properties as above, with f∗ in place of ae. Then we say that V is the Lyapunov function for the
algorithm under consideration, and then it can be proved that ft indeed converges to f∗.

Of course, verifying the spectral gap property is not straightforward. Here is one useful
criterion, called the Perron–Frobenius theorem:

Let A be an n×n matrix with the following properties:

• the entries of A are nonnegative;

• for any nonzero vector f = (f (1), . . . , f (n))T with all f (x) ≥ 0, the vector Af is
positive, i.e., Af (x) > 0 for all x;
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• λ = 1 is an eigenvalue of A, with a positive eigenvector f∗.

Then any other eigenvector of A with eigenvalue 1 is a multiple of f∗.

For example, if all entries of A are positive, then the second property will hold. Also, it is not hard
to see that, even if A does not satisfy these conditions but some power Ak does, then the conclusion
will still hold (why?).

Let us get back to our setting of communication between agents in a network. Suppose first
that each agent has the same number of neighbors, i.e., |N (x)| = |N (y)| for all x,y (in this case, we
say that the network graph is regular). Then we can take the matrix

M(x,y) =

 1
d+1 , if x = y or y ∈N (x)

0, otherwise
,

where d is the number of neighbors of any agent. Let us verify that this matrix has the required
properties. First of all, each M(x,y) is obviously nonnegative. Next, we see that M(x,y) is zero only
if x , y and y <N (x). Finally, we want to establish the double Markov property. First, for any x ∈ X
we have ∑

y∈X
M(x,y) =M(x,x) +

∑
y∈N (x)

M(x,y)

=
1

d + 1
+

∑
y∈N (x)

1
d + 1

=
1

d + 1
+

d
d + 1

= 1.

Likewise, for any y ∈ X, ∑
x∈X

M(x,y) =M(y,y) +
∑

x:y∈N (x)

M(x,y)

=
1

d + 1
+

∑
x:y∈N (x)

1
d + 1

.

So, we have a summation over all x that have a given y as their neighbor. Since x is a neighbor of y
if and only if y is a neighbor of x, we have∑

x:y∈N (x)

1
d + 1

=
∑

x:x∈N (y)

1
d + 1

=
d

d + 1
,

and therefore
∑
x∈XM(x,y) = 1. For example, for the network shown in Fig. 2 we have

M =


1/3 1/3 0 0 1/3
1/3 1/3 1/3 0 0
0 1/3 1/3 1/3 0
0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3

 .
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The matrix M2 has eigenvalues 1, 3+
√

5
18 (with multiplicity 2), and 3−

√
5

18 (with multiplicity 2), and
therefore

γ(M) = 1− 3 +
√

5
18

=
15 +

√
5

18
.

If the network graph is not regular, then the matrix

M =


1− |N (x)|

dmax+1 , if x = y
1

dmax+1 . if x ∈N (y)

0, otherwise

,

where dmax
4= maxx∈X |N (x)|, has the required properties (prove it).

Just like the PageRank algorithm, the average consensus algorithm is deterministic. How-
ever, because the matrix M can be seen as a transition matrix of a Markov chain with state
space X = {1, . . . ,n}, we can give an appealing stochastic interpretation of our analysis. Let
π = (1/n,1/n, . . . ,1/n) denote the uniform probability distribution on X. Then π = πM, i.e., π
is the invariant distribution of M. Indeed, using the double Markov property of M, we can write

πM(x) =
∑
y∈X

π(y)M(y,x) =
1
n

∑
y∈X

M(y,x) =
1
n
.

Now, suppose that we have a Markov chain X = (Xt)t∈Z+
with this transition matrix, and we have

some real-valued function f0 on the state space X. For a given initial state X0 = x0, let us calculate
the expected value of f0(Xt). It is given by∑

x∈X
Mt(x0,x)f0(x) = ft(x0).

This is a function of x0. If X0 ∼ π, then this becomes a random variable whose mean is given by

E[ft(X0)] =
∑
x∈X

π(x)f0(x) =
1
n

∑
x∈X

f0(x) = a,

and whose variance is

Var[ft(X0)] =
∑
x∈X

π(x) (ft(x)− a)2 =
1
n

∑
x∈X

(ft(x)− a)2 =
1
n
‖ft − ae‖2 = V (ft).

Thus, our analysis of the average consensus algorithm can be viewed in terms of Markov chains:
Suppose that we have a Markov chain on X with transition matrix M which is double Markov, and
such that π is an invariant distribution. Suppose also that the column vector e = (1,1, . . . ,1)T is the
only eigenvector of M2 with eigenvalue 1. Then, if we start the chain in the invariant distribution,
i.e., X0 ∼ π, then, for any function f0 : X→ R,

Var[ft(X0)] ≤ (1−γ(M))tVar[f0(X0)],

where γ(M) ∈ [0,1) is the spectral gap of M.
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