
ECE 498MR Homework 5 (due 4/26/17, beginning of class)

Note: Problems (or parts of problems) marked with a star (?) are required for graduate students to receive
4 credit hours; undergraduate students who solve these problems will receive extra credit points.

Submission: Write your name, netid, and u for undergrad/g for grad in the upper right-hand corner of
the first page of your written solutions. Typewritten solutions will receive 5 extra credit points.

Problems to be handed in

In Problems 1–3, you will fill in the details from the lecture on the Kalman filter.

1 Let X and Y be two random variables with joint pdf fXY . The conditional pdf of X given Y = y is
defined as

fX |Y (x|y) =
fXY (x,y)
fY (y)

,

whenever it exists. Here, fY (y) =
∫∞
−∞ fXY (x,y)dx is the marginal pdf of Y . The conditional expectation

(or conditional mean) of X given Y = y is defined as

E[X |Y = y] =
∫ ∞
−∞
xfX |Y (x|y)dx,

whenever it exists. Note that E[X |Y = y] is a function of y. In this problem, we will explore several
properties of conditional pdfs and conditional means.

(a) Suppose that X and Y are independent random variables. Prove that E[X |Y = y] = E[X] for
any y.

(b) Let U be a random variable with pdf fU , which is independent of X. Define Y = aX +U ,
where a ∈ R is some constant. Show that fY |X(y|x) = fU (y − ax).

Hint: You will first need to compute the joint pdf of X and Y . A good way of doing this is by
exploiting the Law of the Unconscious Statistician: the expected value of any function g(X,Y )
with respect to X and Y , defined as

E[g(X,Y )] =
∫ ∞
−∞

∫ ∞
−∞
g(x,y)fXY (x,y)dxdy,

can also be written down in terms of X and U :

E[g(X,Y )] = E[g(X,aX +U )].

Use this relation, together with the fact that X and U are independent random variables, to
show that

E[g(X,Y )] =
∫ ∞
−∞

∫ ∞
−∞
g(x,y)fX(x)fU (y − ax)dxdy

for any g.
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(c) Consider the setting of part (b), where X ∼ N (mX ,σ
2
X) and U ∼ N (0,σ2

U ). Prove that the
conditional pdf fY |X is Gaussian with mean mY |X=x = ax and variance σ2

U .

(d) Continuing with the setting of part (c), prove that the conditional pdf fX |Y is Gaussian with
mean

mX |Y=y =
aσ2
Xy +mXσ

2
U

a2σ2
X + σ2

U

and variance

σ2
X |Y =

σ2
Xσ

2
U

a2σ2
X + σ2

U

(note that mX |Y=y is a function of y, while σ2
X |Y is a constant, which is why we write σ2

X |Y ).

Hint: Using Bayes’ rule,

fX |Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
.

Use the results of parts (b,c) to prove that

fX |Y (x|y) ∝ exp
(
− 1

2σ2
U

(y − ax)2 − 1

2σ2
X

(x −mX)2
)
,

where the constant of proportionality is a function of y. Complete the square in the exponent
to extract mX |Y=y and σ2

X |Y and thus show that fX |Y is a Gaussian pdf.

2 In class, we have derived the Bayesian filtering recursion for a discrete-state hidden Markov
model. In this problem, we will derive such a recursion for a certain type of continuous-state
hidden Markov models. Let X0,U1,U2, . . . ,V1,V2, . . . be independent real-valued random variables,
where the distribution of X0 has a pdf f0, the Ut’s are i.i.d. with common pdf g, and the Vt’s are
i.i.d. with common pdf h. The evolution of the real-valued hidden state signal (Xt)t∈N and the
real-valued observation signal (Yt)t∈N is given by

Xt = aXt−1 +Ut ,

Yt = cXt +Vt ,

where a,c ∈ R are known coefficients.

(a) Show that, for any t ∈ N, the random variables Xt0 = (X0, . . . ,Xt),Y
t
1 = (Y1, . . . ,Yt) have the joint

pdf

fXt0,Y t1 (xt0, y
t
1) = f0(x0)

t∏
s=1

g(xs − axs−1)h(ys − cxs).

(b) Just as in the discrete case, the Bayesian filtering problem entails the computation of the
conditional pdf’s

πt(xt)
4= fXt |Y t1 (xt |yt1) =

fXt ,Y t1 (xt , y
t
1)

fY t1 (yt1)
.

2



ECE 498MR Homework 5 (due 4/26/17, beginning of class)

For any s, t ∈ N, let πs|t(xs) denote the conditional pdf of Xs given Y t1 . Show that the computa-
tion of πt ≡ πt|t can be decomposed into the prediction and the correction steps,

πt|t
prediction

−−−−−−−−−−−−−−→ πt+1|t
correction−−−−−−−−−−−−−−→ πt+1|t+1,

where the prediction step is given by

πt+1|t(x) =
∫ ∞
−∞
πt(u)g(x − au)du

and the correction step is given by

πt+1|t+1(x) =
πt+1|t(x)h(yt+1 − cx)∫∞

−∞πt+1|t(u)h(yt+1 − cu),du
,

with the initial condition π0 = π0|0 = f0.

3 In general, the computation of πt is intractable, just like in the discrete case. However, when X0,
the Ut’s, and the Vt’s are independent Gaussian random variables, the filtering update simplifies
considerably and amounts to recursive computation of conditional means mt = E[Xt |Y t1 = yt1] and
variances Σt = Var[Xt |Y t1 = yt1]. This recursion is known as the Kalman filter, after its inventor
Rudolf E. Kalman. We assume the following:

• The initial state X0 ∼N (µ0,σ
2
0 ), U = (Ut)t∈N

i.i.d.∼ N (0,σ2
U ), V = (Vt)t∈N

i.i.d.∼ N (0,σ2
V ) are mutu-

ally independent random variables.

• Just like in Problem 2, the evolution of the hidden state (Xt)t∈N and the observation (Yt)t∈N is
given by

Xt = aXt−1 +Ut ,

Yt = cXt +Vt

where a,c ∈ R are the given coefficients.

(a) Show that, for each t, the random variables Xt0,Y
t
1 are jointly Gaussian, and therefore it

suffices to keep track of the conditional mean

mt
4= E[Xt |Y t1 = yt1]

and the conditional variance
Σt

4= Var[Xt |Y t1 = yt1].

(b) For any s, t, define ms|t
4= E[Xs|Y t1] and Σs|t

4= Var[Xs|Y t1 = yt1]. Thus, mt = mt|t and Σt = Σt|t.
Show that the prediction step amounts to

mt+1|t = amt|t ,

Σt+1|t = a2Σt|t + σ2
U
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and the correction step is given by

mt+1|t+1 =
cyt+1Σt+1|t +mt+1|tσ

2
V

c2Σt+1|t + σ2
V

,

Σt+1|t+1 =
Σt+1|tσ

2
V

c2Σt+1|t + σ2
V

,

with the initial condition m0 =m0|0 = µ0 and Σ0 = Σ0|0 = σ2
0 .

(c)? Show that Σt is the variance of the state estimation error Xt −mt at time t. We say that Σ∞
is the steady-state error variance of the Kalman filter if Σt→ Σ∞ as t→∞. It can be shown
that, if this limit exists, then it is given by solving the fixed-point equation Σt+1 = Σt. What
are the conditions on a,c,σ2

U ,σ
2
V to guarantee this?

4 Hidden Markov models can have very strange behavior. Consider a discrete-state hidden
Markov model, where the hidden state signal X = (Xt)t∈Z+

is a Markov chain with state space
X = {1,2,3,4}, arbitrary initial state distribution p0, and one-step transition probability matrix

M =


1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2

 ,
and where the observation signal Y = (Yt)t∈N is binary-valued, with

Yt =

1, if Xt = 1 or Xt = 3

0, otherwise
.

Consider the following two situations:

(i) We observe the entire signal Y and a single state Xt for some t ≥ 1.

(ii) We observe the entire signal Y , but not the state process X.

Explain why in the first situation we can recover the entire hidden state process X, while in the
second situation there is still uncertainty about the initial state X0 (and therefore the subsequent
states X1,X2, . . .).

5(?)

(a) Suppose that X and Y are two jointly Gaussian random variables with means mX ,mY , vari-
ances σ2

X ,σ
2
Y , and covariance cXY = E[(X −mX)(Y −mY )]. Prove that the conditional pdf fX |Y

is Gaussian with mean
mX |Y=y =mX +

cXY
σ2
Y

(y −mY )
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and variance

σ2
X |Y = σ2

X −
c2
XY

σ2
Y

,

and show that the result of Problem 1(d) is a special case of this.

Hint: Consider the random variables

U
4=mX +

cXY
σ2
Y

(Y −mY )

and V 4= X −U . Show that E[V ] = 0, that Y and V are independent, and that U and V are
independent. Use this to prove that E[X |Y = y] = E[U +V |Y = y] = E[U |Y = y] =mX |Y=y and
that σ2

X = σ2
U + σ2

V , and therefore that σ2
X |Y=y = σ2

V = σ2
X − σ

2
U .

(b) Let X,Y1, . . . ,Yn be jointly Gaussian random variables, where E[Yi] = 0 and E[YiYj ] = 0 for all
i and all j , i. Show that the conditional mean E[X |Y n1 = yn1 ] is given by

E[X |Y n1 = yn1 ] = E[X] +
n∑
i=1

E[XYi]
Var[Yi]

yi .

Hint: Use the same strategy as in part (a).
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