Note: Problems (or parts of problems) marked with a star ( $\star$ ) are required for graduate students to receive 4 credit hours; undergraduate students who solve these problems will receive extra credit points.

Submission: Write your name, netid, and u for undergrad/g for grad in the upper right-hand corner of the first page of your written solutions. Typewritten solutions will receive 5 extra credit points.

## Problems to be handed in

In Problems 1-3, you will fill in the details from the lecture on the Kalman filter.
1 Let $X$ and $Y$ be two random variables with joint pdf $f_{X Y}$. The conditional pdf of $X$ given $Y=y$ is defined as

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
$$

whenever it exists. Here, $f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}(x, y) \mathrm{d} x$ is the marginal pdf of $Y$. The conditional expectation (or conditional mean) of $X$ given $Y=y$ is defined as

$$
\mathbf{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \mathrm{d} x,
$$

whenever it exists. Note that $\mathbf{E}[X \mid Y=y]$ is a function of $y$. In this problem, we will explore several properties of conditional pdfs and conditional means.
(a) Suppose that $X$ and $Y$ are independent random variables. Prove that $\mathbf{E}[X \mid Y=y]=\mathbf{E}[X]$ for any $y$.
(b) Let $U$ be a random variable with pdf $f_{U}$, which is independent of $X$. Define $Y=a X+U$, where $a \in \mathbb{R}$ is some constant. Show that $f_{Y \mid X}(y \mid x)=f_{U}(y-a x)$.
Hint: You will first need to compute the joint pdf of $X$ and $Y$. A good way of doing this is by exploiting the Law of the Unconscious Statistician: the expected value of any function $g(X, Y)$ with respect to $X$ and $Y$, defined as

$$
\mathbf{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

can also be written down in terms of $X$ and $U$ :

$$
\mathbf{E}[g(X, Y)]=\mathbf{E}[g(X, a X+U)] .
$$

Use this relation, together with the fact that $X$ and $U$ are independent random variables, to show that

$$
\mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X}(x) f_{U}(y-a x) \mathrm{d} x \mathrm{~d} y
$$

for any $g$.
(c) Consider the setting of part (b), where $X \sim N\left(m_{X}, \sigma_{X}^{2}\right)$ and $U \sim N\left(0, \sigma_{U}^{2}\right)$. Prove that the conditional pdf $f_{Y \mid X}$ is Gaussian with mean $m_{Y \mid X=x}=a x$ and variance $\sigma_{U}^{2}$.
(d) Continuing with the setting of part (c), prove that the conditional pdf $f_{X \mid Y}$ is Gaussian with mean

$$
m_{X \mid Y=y}=\frac{a \sigma_{X}^{2} y+m_{X} \sigma_{U}^{2}}{a^{2} \sigma_{X}^{2}+\sigma_{U}^{2}}
$$

and variance

$$
\sigma_{X \mid Y}^{2}=\frac{\sigma_{X}^{2} \sigma_{U}^{2}}{a^{2} \sigma_{X}^{2}+\sigma_{U}^{2}}
$$

(note that $m_{X \mid Y=y}$ is a function of $y$, while $\sigma_{X \mid Y}^{2}$ is a constant, which is why we write $\sigma_{X \mid Y}^{2}$ ). Hint: Using Bayes' rule,

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} .
$$

Use the results of parts (b,c) to prove that

$$
f_{X \mid Y}(x \mid y) \propto \exp \left(-\frac{1}{2 \sigma_{U}^{2}}(y-a x)^{2}-\frac{1}{2 \sigma_{X}^{2}}\left(x-m_{X}\right)^{2}\right),
$$

where the constant of proportionality is a function of $y$. Complete the square in the exponent to extract $m_{X \mid Y=y}$ and $\sigma_{X \mid Y}^{2}$ and thus show that $f_{X \mid Y}$ is a Gaussian pdf.

2 In class, we have derived the Bayesian filtering recursion for a discrete-state hidden Markov model. In this problem, we will derive such a recursion for a certain type of continuous-state hidden Markov models. Let $X_{0}, U_{1}, U_{2}, \ldots, V_{1}, V_{2}, \ldots$ be independent real-valued random variables, where the distribution of $X_{0}$ has a pdf $f_{0}$, the $U_{t}$ 's are i.i.d. with common pdf $g$, and the $V_{t}$ 's are i.i.d. with common pdf $h$. The evolution of the real-valued hidden state signal $\left(X_{t}\right)_{t \in \mathbb{N}}$ and the real-valued observation signal $\left(Y_{t}\right)_{t \in \mathbb{N}}$ is given by

$$
\begin{aligned}
X_{t} & =a X_{t-1}+U_{t}, \\
Y_{t} & =c X_{t}+V_{t},
\end{aligned}
$$

where $a, c \in \mathbb{R}$ are known coefficients.
(a) Show that, for any $t \in \mathbb{N}$, the random variables $X_{0}^{t}=\left(X_{0}, \ldots, X_{t}\right), Y_{1}^{t}=\left(Y_{1}, \ldots, Y_{t}\right)$ have the joint pdf

$$
f_{X_{0}^{t}, Y_{1}^{t}}\left(x_{0}^{t}, y_{1}^{t}\right)=f_{0}\left(x_{0}\right) \prod_{s=1}^{t} g\left(x_{s}-a x_{s-1}\right) h\left(y_{s}-c x_{s}\right) .
$$

(b) Just as in the discrete case, the Bayesian filtering problem entails the computation of the conditional pdf's

$$
\pi_{t}\left(x_{t}\right) \triangleq f_{X_{t} \mid Y_{1}^{t}}\left(x_{t} \mid y_{1}^{t}\right)=\frac{f_{X_{t}, Y_{1}^{t}}\left(x_{t}, y_{1}^{t}\right)}{f_{Y_{1}^{t}}\left(y_{1}^{t}\right)} .
$$

For any $s, t \in \mathbb{N}$, let $\pi_{s \mid t}\left(x_{s}\right)$ denote the conditional pdf of $X_{s}$ given $Y_{1}^{t}$. Show that the computation of $\pi_{t} \equiv \pi_{t \mid t}$ can be decomposed into the prediction and the correction steps,

$$
\pi_{t \mid t} \xrightarrow{\text { prediction }} \pi_{t+1 \mid t} \xrightarrow{\text { correction }} \pi_{t+1 \mid t+1} \text {, }
$$

where the prediction step is given by

$$
\pi_{t+1 \mid t}(x)=\int_{-\infty}^{\infty} \pi_{t}(u) g(x-a u) \mathrm{d} u
$$

and the correction step is given by

$$
\pi_{t+1 \mid t+1}(x)=\frac{\pi_{t+1 \mid t}(x) h\left(y_{t+1}-c x\right)}{\int_{-\infty}^{\infty} \pi_{t+1 \mid t}(u) h\left(y_{t+1}-c u\right), \mathrm{d} u}
$$

with the initial condition $\pi_{0}=\pi_{0 \mid 0}=f_{0}$.

3 In general, the computation of $\pi_{t}$ is intractable, just like in the discrete case. However, when $X_{0}$, the $U_{t}$ 's, and the $V_{t}$ 's are independent Gaussian random variables, the filtering update simplifies considerably and amounts to recursive computation of conditional means $m_{t}=\mathbf{E}\left[X_{t} \mid Y_{1}^{t}=y_{1}^{t}\right]$ and variances $\Sigma_{t}=\operatorname{Var}\left[X_{t} \mid Y_{1}^{t}=y_{1}^{t}\right]$. This recursion is known as the Kalman filter, after its inventor Rudolf E. Kalman. We assume the following:

- The initial state $X_{0} \sim N\left(\mu_{0}, \sigma_{0}^{2}\right), U=\left(U_{t}\right)_{t \in \mathbb{N}} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma_{U}^{2}\right), V=\left(V_{t}\right)_{t \in \mathbb{N}} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma_{V}^{2}\right)$ are mutually independent random variables.
- Just like in Problem 2, the evolution of the hidden state $\left(X_{t}\right)_{t \in \mathbb{N}}$ and the observation $\left(Y_{t}\right)_{t \in \mathbb{N}}$ is given by

$$
\begin{aligned}
X_{t} & =a X_{t-1}+U_{t} \\
Y_{t} & =c X_{t}+V_{t}
\end{aligned}
$$

where $a, c \in \mathbb{R}$ are the given coefficients.
(a) Show that, for each $t$, the random variables $X_{0}^{t}, Y_{1}^{t}$ are jointly Gaussian, and therefore it suffices to keep track of the conditional mean

$$
m_{t} \triangleq \mathbf{E}\left[X_{t} \mid Y_{1}^{t}=y_{1}^{t}\right]
$$

and the conditional variance

$$
\Sigma_{t} \triangleq \operatorname{Var}\left[X_{t} \mid Y_{1}^{t}=y_{1}^{t}\right]
$$

(b) For any $s, t$, define $m_{s \mid t} \triangleq \mathbf{E}\left[X_{s} \mid Y_{1}^{t}\right]$ and $\Sigma_{s \mid t} \triangleq \operatorname{Var}\left[X_{s} \mid Y_{1}^{t}=y_{1}^{t}\right]$. Thus, $m_{t}=m_{t \mid t}$ and $\sum_{t}=\sum_{t \mid t}$. Show that the prediction step amounts to

$$
\begin{aligned}
m_{t+1 \mid t} & =a m_{t \mid t} \\
\Sigma_{t+1 \mid t} & =a^{2} \Sigma_{t \mid t}+\sigma_{U}^{2}
\end{aligned}
$$

and the correction step is given by

$$
\begin{aligned}
& m_{t+1 \mid t+1}=\frac{c y_{t+1} \sum_{t+1 \mid t}+m_{t+1 \mid t} \sigma_{V}^{2}}{c^{2} \Sigma_{t+1 \mid t}+\sigma_{V}^{2}}, \\
& \Sigma_{t+1 \mid t+1}=\frac{\sum_{t+1 \mid t} \sigma_{V}^{2}}{c^{2} \Sigma_{t+1 \mid t}+\sigma_{V}^{2}},
\end{aligned}
$$

with the initial condition $m_{0}=m_{0 \mid 0}=\mu_{0}$ and $\Sigma_{0}=\Sigma_{0 \mid 0}=\sigma_{0}^{2}$.
(c) $\star$ Show that $\Sigma_{t}$ is the variance of the state estimation error $X_{t}-m_{t}$ at time $t$. We say that $\Sigma_{\infty}$ is the steady-state error variance of the Kalman filter if $\Sigma_{t} \rightarrow \Sigma_{\infty}$ as $t \rightarrow \infty$. It can be shown that, if this limit exists, then it is given by solving the fixed-point equation $\Sigma_{t+1}=\Sigma_{t}$. What are the conditions on $a, c, \sigma_{U}^{2}, \sigma_{V}^{2}$ to guarantee this?

4 Hidden Markov models can have very strange behavior. Consider a discrete-state hidden Markov model, where the hidden state signal $X=\left(X_{t}\right)_{t \in \mathbb{Z}_{+}}$is a Markov chain with state space $X=\{1,2,3,4\}$, arbitrary initial state distribution $p_{0}$, and one-step transition probability matrix

$$
M=\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 0 & 1 / 2
\end{array}\right),
$$

and where the observation signal $Y=\left(Y_{t}\right)_{t \in \mathbb{N}}$ is binary-valued, with

$$
Y_{t}=\left\{\begin{array}{ll}
1, & \text { if } X_{t}=1 \text { or } X_{t}=3 \\
0, & \text { otherwise }
\end{array} .\right.
$$

Consider the following two situations:
(i) We observe the entire signal $Y$ and a single state $X_{t}$ for some $t \geq 1$.
(ii) We observe the entire signal $Y$, but not the state process $X$.

Explain why in the first situation we can recover the entire hidden state process $X$, while in the second situation there is still uncertainty about the initial state $X_{0}$ (and therefore the subsequent states $\left.X_{1}, X_{2}, \ldots\right)$.

## 5(夫)

(a) Suppose that $X$ and $Y$ are two jointly Gaussian random variables with means $m_{X}, m_{Y}$, variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$, and covariance $c_{X Y}=\mathbf{E}\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right]$. Prove that the conditional pdf $f_{X \mid Y}$ is Gaussian with mean

$$
m_{X \mid Y=y}=m_{X}+\frac{c_{X Y}}{\sigma_{Y}^{2}}\left(y-m_{Y}\right)
$$

and variance

$$
\sigma_{X \mid Y}^{2}=\sigma_{X}^{2}-\frac{c_{X Y}^{2}}{\sigma_{Y}^{2}},
$$

and show that the result of Problem 1(d) is a special case of this.
Hint: Consider the random variables

$$
U \triangleq m_{X}+\frac{c_{X Y}}{\sigma_{Y}^{2}}\left(Y-m_{Y}\right)
$$

and $V \triangleq X-U$. Show that $\mathbf{E}[V]=0$, that $Y$ and $V$ are independent, and that $U$ and $V$ are independent. Use this to prove that $\mathbf{E}[X \mid Y=y]=\mathbf{E}[U+V \mid Y=y]=\mathbf{E}[U \mid Y=y]=m_{X \mid Y=y}$ and that $\sigma_{X}^{2}=\sigma_{U}^{2}+\sigma_{V}^{2}$, and therefore that $\sigma_{X \mid Y=y}^{2}=\sigma_{V}^{2}=\sigma_{X}^{2}-\sigma_{U}^{2}$.
(b) Let $X, Y_{1}, \ldots, Y_{n}$ be jointly Gaussian random variables, where $\mathbf{E}\left[Y_{i}\right]=0$ and $\mathbf{E}\left[Y_{i} Y_{j}\right]=0$ for all $i$ and all $j \neq i$. Show that the conditional mean $\mathbf{E}\left[X \mid Y_{1}^{n}=y_{1}^{n}\right]$ is given by

$$
\mathbf{E}\left[X \mid Y_{1}^{n}=y_{1}^{n}\right]=\mathbf{E}[X]+\sum_{i=1}^{n} \frac{\mathbf{E}\left[X Y_{i}\right]}{\operatorname{Var}\left[Y_{i}\right]} y_{i} .
$$

Hint: Use the same strategy as in part (a).

