
ECE 498MR Homework 3 (due 3/8/17, beginning of class)

Note: Problems (or parts of problems) marked with a star (?) are required for graduate students to receive
4 credit hours; undergraduate students who solve these problems will receive extra credit points.

Submission: Write your name, netid, and u for undergrad/g for grad in the upper right-hand corner of
the first page of your written solutions. Typewritten solutions will receive 5 extra credit points.

Problems to be handed in

1 Let X = (Xt)t∈R be a weakly stationary stochastic signal with zero mean and autocorrelation
function RX(τ) = σ2e−|τ |. Let Y be the stochastic signal obtained from X via

Yt =
1

2t0

∫ t+t0

t−t0
Xτdτ,

where t0 > 0 is a fixed window size.

(a) Prove that Y is also weakly stationary.

(b) Find the mean mY and the power spectral density SY .

2 Let X = (Xt)t∈R be a weakly stationary stochastic signal whose power spectral density SX(ω)
vanishes if |ω| ≥ 2πB. By analogy with the deterministic case, we say that X is bandlimited with
bandwidth B Hz. Given such a signal, suppose we sample it at the Nyquist rate and generate the
samples XkT , for k ∈ Z, where T = 1

2B is the Nyquist sampling period. Then the value of Xt at any t
can be reconstructed via the sampling expansion

Xt =
∞∑

k=−∞
XkT sinc

(
2B(t − kT )

)
,

where sinc(u) 4= sin(πu)
πu is the sinc function. Now consider the situation where the samples XkT are

corrupted by noise before reconstruction. In this case, we will not be able to reconstruct Xt exactly.
In this problem, we will analyze this situation and compute the expected squared error.

We will model the noise by a weakly stationary discrete-time stochastic signal N = (Nk)k∈Z with
zero mean mN (k) = E[Nk] = 0 and a given autocorrelation function RN (m) = E[NkNk+m]. Note that
we are not assuming that N is independent of X. Each sample XkT is corrupted to the noisy version
X̃k

4= XkT +Nk , and then we attempt to reconstruct Xt from the noisy samples by

X̂t =
∞∑

k=−∞
X̃ksinc

(
2B(t − kT )

)
=

∞∑
k=−∞

(XkT +Nk) sinc
(
2B(t − kT )

)
.

We will examine the reconstruction error ∆t
4= E[(Xt − X̂t)2].
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(a) Define the following continuous-time stochastic signal W = (Wt)t∈R:

Wt
4=
∞∑

k=−∞
Nk sinc

(
2B(t − kT )

)
,

and show that W is weakly stationary with mW = 0 and

RW (τ) =
∞∑

m=−∞
RN (m)sinc

(
2B(τ +mT )

)
.

Hint: The formula

sinc
(
2B(t +θ)

)
=

∞∑
k=−∞

sinc
(
2B(t − kT )

)
sinc

(
2B(kT +θ)

)
may come in handy.

(b) Prove that ∆t = E[W 2
t ] and use the result from part (a) to show that

∆t = RN (0).

3 In this problem, we will explore some properties of jointly Gaussian random variables.

(a) Recall that the characteristic function of a scalar random variable X is given by

ΦX(u) = E[eiuX], u ∈ R.

and that the joint characteristic function of a random vector X = (Xt)t∈{1,...,n} is given by

ΦX1,...,Xn(u1, . . . ,un) = E[ei(u1X1+...+unXn)], u1, . . . ,un ∈ R.

Assume that X1, . . . ,Xn have a joint pdf fX1,...,Xn . We say that X1, . . . ,Xn are independent
random variables if

fX1,...,Xn(x1, . . . ,xn) = fX1
(x1)fX2

(x2) . . . fXn(xn),

where fXi denotes the marginal pdf of Xi . Prove that X1, . . . ,Xn are independent if and only if

ΦX1,...,Xn(u1, . . . ,un) = ΦX1
(u1)ΦX2

(u2) . . .ΦXn(un)

for all u1, . . . ,un ∈ R.

(b) We say thatX1, . . . ,Xn are uncorrelated if the covariance matrix CX is diagonal, i.e., if CX(s, t) =
E[XsXt] − E[Xs]E[Xt] = 0 for s , t. In general, uncorrelated random variables can still be
dependent. Use the result from part (a) to prove that if X1, . . . ,Xn are uncorrelated and jointly
Gaussian, then they are independent.
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(c) Let X be a Gaussian random vector. In class, we have proved that the projection aTX of
X onto any deterministic vector a = (a1, . . . , an)T ∈ Rn is Gaussian. Now consider an m × n
matrix A = (Aij )i,j∈{1,...,n} and form the random vector Y = AX. Prove that Y is also a Gaussian
random vector.

(d) Let X be a Gaussian random variable with mean 0 and variance σ2. Let U be a Rademacher
random variable (i.e., P[U = ±1] = 1

2 ) independent of X. Prove that Y =UX is also Gaussian
with mean 0 and variance σ2, but X and Y are not jointly Gaussian.

Hint: Consider the sum X +Y .

4 Let X be a zero-mean stationary Gaussian stochastic signal. Compute the crosscorrelation
function RXY (τ) between X and Y , where Yt = g(Xt) with the following choices for g:

(a) The full-wave rectifier g(x) = |x|.

(b) The power-law detector g(x) = xp for p ∈ N.

(c) The gating function g(x) = u(x+ 1)−u(x − 1).

5 (?) Poisson processes are used to model situations where discrete events happen at random
times. For example, a Poisson process with rate λ can be used to model the number of customers
arriving at a ticket counter in the airport, where λ is the average number of new customer arrivals
per unit time.

(a) We will first consider the situation when there are several independent queues of customers
arriving at the counter. Formally, let m be the number of queues, and for each k ∈ {1, . . . ,m}
let N (k) = (N (k)

t )t≥0 be a Poisson process with rate λk. Thus, λk is the average number of
customers arrivals per unit time via the kth queue. We assume that these Poisson processes
are mutually independent. The total number of arrivals at the counter at time t is then

Nt =
m∑
k=1

N
(k)
t .

Prove that N is also a Poisson process and compute its arrival rate.

(b) Now we consider the opposite situation: customers arrive at a rate of λ, but each new
customer independently decides to join one of two queues with respective probabilities p
and 1 − p. That is, we have a Poisson process N = (Nt)t≥0 with rate λ, and then we form

two counting processes N (1) = (Nt)t≥0 and N (2) = (N (2)
t )t≥0, where N (i) counts the arrivals of

customers for the ith queue.

Prove that N (1) and N (2) are also Poisson processes and compute their arrival rates.
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