
ECE 498MR Homework 2 (due 2/15/17, beginning of class)

Note: Problems (or parts of problems) marked with a star (?) are required for graduate students to receive
4 credit hours; undergraduate students who solve these problems will receive extra credit points.

Submission: Write your name, netid, and u for undergrad/g for grad in the upper right-hand corner of
the first page of your written solutions. Typewritten solutions will receive 5 extra credit points.

Problems to be handed in

1 Recall the simple random walk on the integers: a particle starts at X0 = 0 and, at each time
t = 1,2, . . . takes a unit step to the left or to the right with equal probability. In class, have proved
the following fact: For any t ∈ N and any x ∈ Z,

P[Xt = x] =
1
2t
Nt(x) :=

 1
2t
( t
x+t
2

)
, if x = −t,2− t,4− t, . . . , t − 4, t − 2, t

0, otherwise.
(0.1)

In other words, Nt(x) is the number of ways in which the particle starting at the origin at time 0
can reach the point x at time t. Now, for x ∈ N, let N+

t (x) denote the number of ways in which the
particle starting at the origin at time 0 can reach the point x at time t without ever visiting any
point y ≤ 0.

(a) Consider any two times 0 < s < t and any two points x,y ∈ Z. Prove that the conditional
probability that the particle will reach the point y at time t given that it was at the point x at
time s is

P[Xt = y|Xs = x] =
1

2t−s
Nt−s(y − x).

(b) For 0 < s < t and for x,y ∈ N, let N0
s,t(x,y) denote the number of ways the particle starting

from Xs = x will reach Xt = y and visit the origin at some intermediate time s ≤ r ≤ t. Prove
that

N0
s,t(x,y) =Nt−s(x+ y).

Hint: Figure 1 may be helpful.

(c) Use the results from parts (a) and (b) to prove that, for any x ∈ N,

P[X1 > 0,X2 > 0, . . . ,Xt−1 > 0,Xt = x] =
x
t
P[Xt = x].

Hint: The above probability is equal to 1
2tN

+
t (x) (why?). Thus, you need to compute N+

t (x).
To that end, observe that, since X0 = 0, the only way for X1 > 0 to happen would be to have
X1 = 1. Thus, you need to count the number of ways that the particle starting at X1 = 1 can
reach Xt = x without ever visiting any y ≤ 0 in between.
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Figure 1: Illustration for Problem 1(b).

2 Recall the example of the sinusoidal signal with random amplitude and phase:

Xt = Acos(2πf t +Θ),

where the amplitude A ∼Uniform(0,1) and the phase Θ ∼Uniform(0,2π) are independent random
variables, and the frequency f (in Hz) is deterministic.

(a) Compute the mean function mX(t) and the variance function σ2
X(t).

(b) Compute the covariance function CX(s, t).

(c) What does the value of CX(t, t + 1/f ) tell you about this stochastic signal?

3 In class, we have derived the marginal distribution of the Wiener process at each time t using
the DeMoivre–Laplace theorem. In this problem, we will develop an alternative approach via the
diffusion equation.

(a) Fix arbitrary τ,h > 0 and show that, for any n ∈ Z+ and any m ∈ Z,

P[X(n+1)τ =mh]−P[Xnτ =mh] =
P[Xnτ =m(h− 1)]− 2P[Xnτ =mh] +P[Xnτ =m(h+ 1)]

2
.

(b) Let ft(x) denote the pdf of Wt. Let t = nτ and x = mh, where h and τ satisfy the constraint
h2/τ =D. Using this and the relation derived in part (a), take the limit τ→ 0 and show that
ft satisfies the following partial differential equation:

∂
∂t
ft(x) =

D
2
∂2

∂x2 ft(x).

(c) Verify by substitution that the solution of the above PDE with the initial condition f0(x) = δ(x)
[where δ(·) is the unit impulse] is given by the Gaussian pdf

ft(x) =
1

√
2πDt

exp
(
− x

2

2Dt

)
.
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4 In this problem, we will explore some properties of the Wiener process. A standard Wiener
processW = (Wt)t≥0 is a Wiener process with D = 1.

(a) Prove that the covariance function of W is given by CX(s, t) = min{s, t}.

(b) Let c > 0 be a fixed positive constant, and define another stochastic signal Y = (Yt)t≥0 by
letting Yt = 1√

c
Wct. Prove that Y is also a standard Wiener process. (This shows that the

sample paths of a Wiener process look the same at every time scale — as long as we rescale
space to compensate for the time scaling.)

(c) Again, let c > 0 be a fixed constsant, and define another stochastic signal Z = (Zt)t≥0 by letting
Zt = Wt+c −Wc. Prove that Z is a standard Wiener process, and that it is independent of
(Wt)0≤t≤c. (This shows that the Wiener process can be thought of continually restarting anew
from its current position.)

5 (?) We continue with the set-up from Problem 4. For b > 0, define the hitting time

τb
4= min {t ≥ 0 :Wt ≥ b} ,

i.e., the first time when the particle is at a distance b away from the origin (it may, and will, go
below b later, and then above b, and then below, and so on). This is a random variable, since it
depends on the random path of Wt. You will prove the following neat formula:

P[τb ≤ t] = 2Q
(
b
√
t

)
, t ≥ 0

where Q(u) = 1√
2π

∫∞
u
e−x

2/2dx is the complementary Gaussian cdf.

(a) By the law of total probability,

P[τb ≤ t] = P[τb ≤ t,Wt ≤ b] +P[τb ≤ t,Wt > b].

Now argue that the events {τb ≤ t,Wt > b} and {Wt > b} are equivalent (the continuity of Wt as
a function of t is crucial for this to hold), and conclude from this that

P[τb ≤ t] = P[Wt ≤ b|τb ≤ t]P[τb ≤ t] +Q
(
b
√
t

)
.

(b) Again, using the continuity of Wt in t, argue that P[Wt ≤ b|τb ≤ t] = 1
2 (it may be helpful to

draw a picture).

(c) Put all the pieces together to obtain the formula we seek.

3


