Note: Problems (or parts of problems) marked with a star (\star) are required for graduate students to receive 4 credit hours; undergraduate students who solve these problems will receive extra credit points.

Submission: Write your name, netid, and u for undergrad/g for grad in the upper right-hand corner of the first page of your written solutions. Typewritten solutions will receive 5 extra credit points.

Problems to be handed in

1 Recall the simple random walk on the integers: a particle starts at $X_{0}=0$ and, at each time $t=1,2, \ldots$ takes a unit step to the left or to the right with equal probability. In class, have proved the following fact: For any $t \in \mathbb{N}$ and any $x \in \mathbb{Z}$,

$$
\mathbf{P}\left[X_{t}=x\right]=\frac{1}{2^{t}} N_{t}(x):= \begin{cases}\frac{1}{2^{t}\left(\frac{x+t}{2}\right),} & \text { if } x=-t, 2-t, 4-t, \ldots, t-4, t-2, t \tag{0.1}\\ 0, & \text { otherwise } .\end{cases}
$$

In other words, $N_{t}(x)$ is the number of ways in which the particle starting at the origin at time 0 can reach the point x at time t. Now, for $x \in \mathbb{N}$, let $N_{t}^{+}(x)$ denote the number of ways in which the particle starting at the origin at time 0 can reach the point x at time t without ever visiting any point $y \leq 0$.
(a) Consider any two times $0<s<t$ and any two points $x, y \in \mathbb{Z}$. Prove that the conditional probability that the particle will reach the point y at time t given that it was at the point x at time s is

$$
\mathbf{P}\left[X_{t}=y \mid X_{s}=x\right]=\frac{1}{2^{t-s}} N_{t-s}(y-x) .
$$

(b) For $0<s<t$ and for $x, y \in \mathbb{N}$, let $N_{s, t}^{0}(x, y)$ denote the number of ways the particle starting from $X_{s}=x$ will reach $X_{t}=y$ and visit the origin at some intermediate time $s \leq r \leq t$. Prove that

$$
N_{s, t}^{0}(x, y)=N_{t-s}(x+y) .
$$

Hint: Figure 1 may be helpful.
(c) Use the results from parts (a) and (b) to prove that, for any $x \in \mathbb{N}$,

$$
\mathbf{P}\left[X_{1}>0, X_{2}>0, \ldots, X_{t-1}>0, X_{t}=x\right]=\frac{x}{t} \mathbf{P}\left[X_{t}=x\right] .
$$

Hint: The above probability is equal to $\frac{1}{2^{t}} N_{t}^{+}(x)$ (why?). Thus, you need to compute $N_{t}^{+}(x)$. To that end, observe that, since $X_{0}=0$, the only way for $X_{1}>0$ to happen would be to have $X_{1}=1$. Thus, you need to count the number of ways that the particle starting at $X_{1}=1$ can reach $X_{t}=x$ without ever visiting any $y \leq 0$ in between.

Figure 1: Illustration for Problem 1(b).

2 Recall the example of the sinusoidal signal with random amplitude and phase:

$$
X_{t}=A \cos (2 \pi f t+\Theta),
$$

where the amplitude $A \sim \operatorname{Uniform}(0,1)$ and the phase $\Theta \sim \operatorname{Uniform}(0,2 \pi)$ are independent random variables, and the frequency f (in Hz) is deterministic.
(a) Compute the mean function $m_{X}(t)$ and the variance function $\sigma_{X}^{2}(t)$.
(b) Compute the covariance function $C_{X}(s, t)$.
(c) What does the value of $C_{X}(t, t+1 / f)$ tell you about this stochastic signal?

3 In class, we have derived the marginal distribution of the Wiener process at each time t using the DeMoivre-Laplace theorem. In this problem, we will develop an alternative approach via the diffusion equation.
(a) Fix arbitrary $\tau, h>0$ and show that, for any $n \in \mathbb{Z}_{+}$and any $m \in \mathbb{Z}$,

$$
\mathbf{P}\left[X_{(n+1) \tau}=m h\right]-\mathbf{P}\left[X_{n \tau}=m h\right]=\frac{\mathbf{P}\left[X_{n \tau}=m(h-1)\right]-2 \mathbf{P}\left[X_{n \tau}=m h\right]+\mathbf{P}\left[X_{n \tau}=m(h+1)\right]}{2} .
$$

(b) Let $f_{t}(x)$ denote the pdf of W_{t}. Let $t=n \tau$ and $x=m h$, where h and τ satisfy the constraint $h^{2} / \tau=D$. Using this and the relation derived in part (a), take the limit $\tau \rightarrow 0$ and show that f_{t} satisfies the following partial differential equation:

$$
\frac{\partial}{\partial t} f_{t}(x)=\frac{D}{2} \frac{\partial^{2}}{\partial x^{2}} f_{t}(x)
$$

(c) Verify by substitution that the solution of the above PDE with the initial condition $f_{0}(x)=\delta(x)$ [where $\delta(\cdot)$ is the unit impulse] is given by the Gaussian pdf

$$
f_{t}(x)=\frac{1}{\sqrt{2 \pi D t}} \exp \left(-\frac{x^{2}}{2 D t}\right) .
$$

4 In this problem, we will explore some properties of the Wiener process. A standard Wiener process $W=\left(W_{t}\right)_{t \geq 0}$ is a Wiener process with $D=1$.
(a) Prove that the covariance function of W is given by $C_{X}(s, t)=\min \{s, t\}$.
(b) Let $c>0$ be a fixed positive constant, and define another stochastic signal $Y=\left(Y_{t}\right)_{t \geq 0}$ by letting $Y_{t}=\frac{1}{\sqrt{c}} W_{c t}$. Prove that Y is also a standard Wiener process. (This shows that the sample paths of a Wiener process look the same at every time scale - as long as we rescale space to compensate for the time scaling.)
(c) Again, let $c>0$ be a fixed constsant, and define another stochastic signal $Z=\left(Z_{t}\right)_{t \geq 0}$ by letting $Z_{t}=W_{t+c}-W_{c}$. Prove that Z is a standard Wiener process, and that it is independent of $\left(W_{t}\right)_{0 \leq t \leq c}$. (This shows that the Wiener process can be thought of continually restarting anew from its current position.)

5 (\star) We continue with the set-up from Problem 4. For $b>0$, define the hitting time

$$
\tau_{b} \triangleq \min \left\{t \geq 0: W_{t} \geq b\right\}
$$

i.e., the first time when the particle is at a distance b away from the origin (it may, and will, go below b later, and then above b, and then below, and so on). This is a random variable, since it depends on the random path of W_{t}. You will prove the following neat formula:

$$
\mathbf{P}\left[\tau_{b} \leq t\right]=2 Q\left(\frac{b}{\sqrt{t}}\right), \quad t \geq 0
$$

where $Q(u)=\frac{1}{\sqrt{2 \pi}} \int_{u}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x$ is the complementary Gaussian cdf.
(a) By the law of total probability,

$$
\mathbf{P}\left[\tau_{b} \leq t\right]=\mathbf{P}\left[\tau_{b} \leq t, W_{t} \leq b\right]+\mathbf{P}\left[\tau_{b} \leq t, W_{t}>b\right] .
$$

Now argue that the events $\left\{\tau_{b} \leq t, W_{t}>b\right\}$ and $\left\{W_{t}>b\right\}$ are equivalent (the continuity of W_{t} as a function of t is crucial for this to hold), and conclude from this that

$$
\mathbf{P}\left[\tau_{b} \leq t\right]=\mathbf{P}\left[W_{t} \leq b \mid \tau_{b} \leq t\right] \mathbf{P}\left[\tau_{b} \leq t\right]+Q\left(\frac{b}{\sqrt{t}}\right)
$$

(b) Again, using the continuity of W_{t} in t, argue that $\mathbf{P}\left[W_{t} \leq b \mid \tau_{b} \leq t\right]=\frac{1}{2}$ (it may be helpful to draw a picture).
(c) Put all the pieces together to obtain the formula we seek.

