Note: Problems marked with a star (\star) are required for graduate students to receive 4 credit hours; undergraduate students who solve these problems will receive extra credit points.

Submission: Write your name, netid, and u for undergrad/g for grad in the upper right-hand corner of the first page of your written solutions. Typewritten solutions will receive 5 extra credit points.

Problems to be handed in

1 (Probability review)
(i) Let $(X, Y) \in \mathbb{R}^{2}$ be a point chosen uniformly at random from the unit disk

$$
\mathbb{D}:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\} .
$$

Compute the marginal pdf f_{X} of X and the expected value $\mathbf{E}\left[\sqrt{X^{2}+Y^{2}}\right]$.
(ii) Let X be a real-valued random variable with finite second moment: $\mathbf{E}\left[X^{2}\right]<\infty$. Consider the function $f(c)=\mathbf{E}\left[(X-c)^{2}\right]$. Find the value of c that minimizes f and compute the corresponding minimum value of f.
(iii) Two real-valued random variables U and V are called uncorrelated if

$$
\operatorname{Cov}(U, V):=\mathbf{E}[(U-\mathbf{E}[U])(V-\mathbf{E}[V])]=0 .
$$

Let $U=\sin X$ and $V=\cos X$, where $X \sim \operatorname{Unif}(-\pi, \pi)$. Are U and V uncorrelated? Are they independent? Show all your work and justify all your answers!

2 In class, we saw how to generate a $\operatorname{Bernoulli}(p)$ random variable from a random variable U uniformly distributed on the unit interval $[0,1]$: if $0 \leq U<p$, output 1 ; else, if $p \leq U<1$, output 0 .
(i) Modify the above procedure for the case when, instead of $U \sim \operatorname{Uniform}(0,1)$, we can generate a random variable V with cdf given by

$$
F_{V}(a)= \begin{cases}0, & a<0 \\ a^{2}, & 0 \leq a<1 \\ 1, & a \geq 1\end{cases}
$$

Hint: Can you find a function $f: \mathbb{R} \rightarrow \mathbb{R}$, such that $f(V) \sim \operatorname{Uniform}(0,1)$?
(ii) Now suppose that we wish to generate a random variable X taking values in the finite set $\{1, \ldots, n\}$ with probabilities $p_{i}:=\mathbf{P}[X=i]$. Construct a procedure that takes $U \sim \operatorname{Uniform}(0,1)$ as the input and generates a sample of X as the output.
(iii) Finally, modify your procedure from part (ii) to work with input V from part (i).

3 Consider a Markov chain $X=\left(X_{t}\right)_{t \in \mathbb{Z}_{+}}$with the ternary state space $X=\{1,2,3\}$ and with the transition probability matrix

$$
M=\left(\begin{array}{lll}
\frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & \frac{2}{3}
\end{array}\right)
$$

This constitutes a declarative description of X. Construct an imperative description of X in the form $X_{t+1}=f\left(X_{t}, U_{t}\right)$, where the U_{t} 's are i.i.d. Uniform $(0,1)$ random variables.

4 Prove that any discrete-time Markov chain has the following property:

$$
\begin{gathered}
\mathbf{P}\left[X_{t_{n+1}}=y_{1}, X_{t_{n+2}}=y_{2}, \ldots, X_{t_{n+m}}=y_{m} \mid X_{t_{1}}=x_{1}, X_{t_{2}}=x_{2}, \ldots, X_{t_{n}}=x_{n}\right] \\
=\mathbf{P}\left[X_{t_{n+1}}=y_{1}, X_{t_{n+2}}=y_{2}, \ldots, X_{t_{n+m}}=y_{m} \mid X_{t_{n}}=x_{n}\right]
\end{gathered}
$$

for all $t_{1}<t_{2}<\ldots<t_{n}<t_{n+1}<\ldots<t_{n+m}$ and for all states $x_{0}, \ldots, x_{t}, y_{1}, \ldots, y_{m}$. This is why we say that, in a Markov chain, the future is conditionally independent of the past given the present.

Hint: Pass to a suitable imperative description of the form $X_{t+1}=f\left(X_{t}, U_{t}\right)$ and iterate.

5 (\star) The moment-generating function (MGF) of a real-valued random variable X is defined as $M(\lambda):=\mathbf{E}\left[e^{\lambda X}\right]$.
(i) Find the MGF of a Rademacher random variable, i.e., $\mathbf{P}[X=-1]=\mathbf{P}[X=+1]=\frac{1}{2}$.
(ii) Find the MGF of a Gaussian random variable with mean μ and variance σ^{2}.
(iii) Use the result of part (ii) to prove the following: If $X \sim N\left(\mu, \sigma^{2}\right)$, then, for any $t>0$,

$$
\mathbf{P}[X \geq \mu+t] \leq e^{-t^{2} / 2 \sigma^{2}}
$$

Hint: Note that, for any $\lambda>0, \mathbf{P}[X \geq \mu+t]=\mathbf{P}\left[e^{\lambda X} \geq e^{\lambda(\mu+t)}\right]$.
(iv) Prove the following inequality for any two real-valued random variables X and Y :

$$
|\operatorname{Cov}(X, Y)|^{2} \leq \operatorname{Var}[X] \cdot \operatorname{Var}[Y]
$$

Hint: Assume $\mathbf{E}[X]=\mathbf{E}[Y]=0$ and observe that $\mathbf{E}\left[(X+\alpha Y)^{2}\right] \geq 0$ for any $\alpha \in \mathbb{R}$.

