
ECE 498MR: Introduction to Stochastic Systems 
 
Course Syllabus 
 
Catalog Description: Exploration of noise, uncertainty, and randomness in the context of signals 
and systems. The course will introduce discrete- and continuous-time random processes as input 
and/or output signals of various types of systems, with and without memory or feedback. 
Probabilistic notions will be tightly integrated with techniques from signals and systems, such as 
linearity, time-invariance, causality, transform methods, and stability. Basic concepts will be illustrated 
via numerous examples, such as noise in linear and nonlinear circuits, average consensus and 
PageRank, queuing systems, noise in remote sensing applications, Bayesian filtering, Monte Carlo 
simulation, risk allocation in financial portfolios, stochastic gradient descent. 
 
Course Objectives: Upon successful completion of the course, students will be able to reason about 
noise, uncertainty, and randomness in the context of engineering systems using tools and techniques 
from probability theory and systems theory. 
 
Target Audience: Senior undergraduate and graduate students. 
 
Prerequisites: ECE 210 and ECE 313. 
 
Coursework: 50% homework (which will include regular programming assignments as iPython 
notebooks); 25% midterm; 25% final exam. Graduate students will earn an additional hour of credit 
by solving additional problems of a more theoretical nature. 
 
Text: none required; instructor’s lecture notes and iPython notebooks will be used. The following 
sources may be useful: 

• E. A. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems 
• N. Wiener, Nonlinear Problems in Random Theory 
• P. Albertos and I. Mareels, Feedback and Control for Everyone 
• N. Gershenfeld, The Nature of Mathematical Modeling and The Physics of Information Technology 

 
Outline of Topics: 
 

1. Introduction: noise, uncertainty, and randomness in engineering systems (1 hr) 
 

2. Review of signals and systems, probability (5 hrs) 
 

3. First look: Markov chains as stochastic systems (4.5 hrs) 
a. Motivation: random walk on the integers -- matrix view 
b. Markov chains as nonlinear systems: X[t+1] = f(X[t],Z[t]) 
c. Markov chains as linear systems in the space of probabilities: p[t+1]=Kp[t] 
d. Analysis by z-transform techniques; stability. 
e. Case studies: average consensus and PageRank. 

 
4. Random signals and probabilistic systems (6 hrs) 

a. Random processes as signals (discrete- and continuous-time), in time and frequency 
domain. 

b. Events through Wiener’s viewpoint (random waveform passing through “gates” to 
motivate independent increments, Markov property; inspiration for Feynman’s path 
integral).    



c. Examples: random walk (revisited); Poisson process and other point processes; 
Wiener process; white and colored noise.  
 

5. Following the dynamics (6 hrs) 
a. Moments, auto- and cross-correlation in time and frequency domain; spectral 

methods. 
b. Input-output relations; theorems of Bussgang and Campbell; fluctuation-dissipation 

relations. 
c. Basic analysis of convergence and stability via Lyapunov (or potential) functions. 
d. Case studies: average consensus and PageRank revisited.         

 
6. Uncertainty (5 hrs) 

a. Dynamical view: evolution of uncertainty and information in time. 
b. Packet arrivals and departures in networks, queues as stochastic systems. 
c. A glimpse of Bayesian filtering.  

 
7. Noise (3 hrs) 

a. Noise mechanisms in physical systems: shot noise, Johnson-Nyquist noise, van der 
Ziel (1/f) noise, amplifier noise. 

b. Case studies: discovery of cosmic microwave background radiation by Penzias and 
Wilson; noise and Bayesian filtering in remote sensing systems.  
 

8. Randomness and determinism (5 hrs) 
a. Law of Large Numbers and the Central Limit Theorem through the lens of linear 

systems. 
b. Variance reduction by averaging (examples: invention of least squares; financial risk 

allocation in portfolios following Harry Markowitz; Monte Carlo simulation). 
c. Heuristic derivation of large-deviation bounds via Taylor series and Stirling 

approximation (example: probabilistic interpretation of multiplexing gain in 
telephony). 
 

9. Feedback and control (5 hrs) 
a. Basics of controlled Markov chains: X[t+1]=f(X[t],U[t],Z[t]). 
b. Stabilization and optimization via feedback. 
c. Case study: stochastic gradient descent in machine learning.  

 
10. Midterm (1.5 hrs) 

 
 
 
 


