Exam I Information

The first midterm exam will be held in class
1015 ECE Bldg Thu, March 7, 9:30-10:50 a.m.
The exam is closed-book, no calculators allowed (and you will not need one). You are allowed to bring one two-sided sheet of notes. The exam will cover all of the material covered up to the first half of Lecture 13 given on Feb 29.
In particular, I expect you to understand perfectly the following concepts:

1. General models: State space; transfer function; block diagrams.
2. Linearization.
3. Transient and steady-state response: DC gain; Final Value Theorem.
4. Second-order response and the effect of poles and zeros; time-domain specifications (rise time, overshoot, peak time, settling time) and their relation to pole locations.
5. Stability: definition; necessary condition for stability; Routh-Hurwitz criterion; necessary and sufficient conditions for 2nd- and 3rd-order polynomials.
6. Open-loop and closed-loop feedback control: reference-to-output and reference-to-error transfer functions; tracking error.
7. Simple compensators: PID, lead, lag; effect of controller parameters on time-domain specs and on steady-state response.
8. Root locus methods as developed in class (Rules A-F): Evans' canonical form; phase condition; effect of PD/lead and PI/lag compensation on the root locus.

The bare minimum of the material you need to know will be attached to the exam and reproduced below. However, you are responsible for all of the content outlined above.

Useful Facts

Unilateral Laplace transforms:

$$
\begin{aligned}
f(t), t \geq 0 \quad & \stackrel{\mathscr{L}}{\longrightarrow} \quad F(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t, s \in \mathbb{C} \\
\mathscr{L}\left[f^{\prime}(t)\right] & =s F(s)-f(0) \\
\mathscr{L}\left[f^{\prime \prime}(t)\right] & =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Second-order system:

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& =\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}} \quad \omega_{n}, \zeta>0
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Rise time: } & t_{r} \approx \frac{1.8}{\omega_{n}} \\
\text { Peak time: } & t_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}} \\
\text { Overshoot: } & M_{p}=\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)
\end{array}
$$

$$
\text { Settling time: } \quad t_{s}^{5 \%} \approx \frac{3}{\zeta \omega_{n}}
$$

Stability criteria for polynomials:

- a monic polynomial $p(s)=s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}$ is stable if all of its roots are in the open LHP
- 2 nd-order polynomial

$$
p(s)=s^{2}+a_{1} s+a_{2}
$$

is stable if and only if $a_{1}, a_{2}>0$

- 3rd-order polynomial

$$
p(s)=s^{3}+a_{1} s^{2}+a_{2} s+a_{3}
$$

is stable if and only if $a_{1}, a_{2}, a_{3}>0$ and $a_{1} a_{2}>a_{3}$

Root locus Let L be a proper transfer function of the form

$$
L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}
$$

The root locus is the set of all $s \in \mathbb{C}$ such that

$$
1+K L(s)=0 \quad \Longleftrightarrow \quad a(s)+K b(s)=0
$$

Phase condition: a point $s \in \mathbb{C}$ is on the RL if and only if

$$
\angle L(s)=\angle \frac{b(s)}{a(s)}=\angle \frac{\left(s-z_{1}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \ldots\left(s-p_{n}\right)}=180^{\circ} \bmod 360^{\circ}
$$

Rules for sketching root loci

- Rule A: n branches ($n=\#$ (open-loop poles))
- Rule B: branches start at open-loop poles p_{1}, \ldots, p_{n}
- Rule C: m of the branches end at open-loop zeros z_{1}, \ldots, z_{m} (L is proper: $m \leq n$)
- Rule D : a point $s \in \mathbb{R}$ is on the RL if and only if there is an odd number of real open-loop poles and zeros to the right of it
- Rule E: if $n-m>0$, the remaining $n-m$ branches approach ∞ along asymptotes departing from the point

$$
\alpha=\frac{\sum_{i=1}^{n} p_{i}-\sum_{j=1}^{m} z_{j}}{n-m}
$$

at angles

$$
\frac{(2 \ell+1) \cdot 180^{\circ}}{n-m}, \quad \ell=0,1, \ldots, n-m-1
$$

- Rule F: $j \omega$-crossings
- find the critical value(s) of K (if any) that will make the characteristic polynomial $a(s)+$ $K b(s)$ unstable
- for each of these critical values, solve

$$
a(j \omega)+K b(j \omega)=0
$$

for critical frequencies ω

