UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering
ECE 486: Control Systems

Sample Midterm 1 Solutions

Problem 1

Problem 2

Second-order system with peak time $t_{p}=0.5 \mathrm{sec}$. and 5% settling time $t_{s}=1.5 \mathrm{sec}$.
(a) Determine the poles of this system

The poles are

$$
s=-\sigma \pm j \omega_{d}
$$

where $\sigma=\zeta \omega_{n}$ and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$
From the problem, we are given t_{p} and $t_{s}^{5 \%}$:

$$
\begin{aligned}
& t_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=\frac{\pi}{\omega_{d}}=0.5 \\
& \therefore \omega_{d}=\frac{\pi}{0.5}=2 \pi \\
& t_{s}^{5 \%}=\frac{3}{\zeta \omega_{n}}=\frac{3}{\sigma}=1.5 \\
& \therefore \sigma=\frac{3}{1.5}=2
\end{aligned}
$$

Hence, the poles of this system are at

$$
s=-2 \pm j 2 \pi
$$

(b) Does the system satisfy the spec $t_{r} \leq 0.18 \mathrm{sec}$?

$$
\begin{aligned}
t_{r} & =\frac{1.8}{\omega_{n}} \leq 0.18 \\
\therefore \text { we must have } \omega_{n} & \geq \frac{1.8}{0.18}=10
\end{aligned}
$$

We know that $\omega_{n}^{2}=\sigma^{2}+\omega_{d}^{2}$. In our case,

$$
\omega_{n}^{2}=2^{2}+(2 \pi)^{2} \leq 2^{2}+(2 \cdot 4)^{2}=68<100 .
$$

Therefore, the t_{r} spec is not satisfied.

Problem 3

Closed-loop transfer function:

$$
H(s)=\frac{G_{c} G_{p}}{1+G_{c} G_{p}}
$$

Closed-loop characteristic equation:

$$
1+K L(s)=1+G_{c} G_{p}=1+K \frac{s}{\left(s^{2}-1\right)(s+1)}
$$

Characteristic polynomial:

$$
a(s)+K b(s)=\left(s^{2}-1\right)(s+1)+K s=s^{3}+s^{2}+(K-1) s-1
$$

Plot root locus
A: $n=3, m=1$
B: Poles at $s=1,-1,-1$
C: Zeros at $s=0$
D: Real locus on $(0,1)$
E: $\alpha=\frac{\sum p-\sum z}{n-m}=-\frac{1}{2}$
$\phi_{l}=\frac{180^{\circ}+360^{\circ} l}{n-m}$ where $l=0,1, \ldots, n-m-1$
$\therefore \phi_{1}=90^{\circ}, \phi_{2}=-90^{\circ}$
F: no $j \omega$-crossing

This root locus has a branch in the RHP, so the system is unstable for all $K>0$. (This can also be seen from the characteristic polynomial - it does not satisfy the necessary condition for stability.)

