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1 Introduction 

1.1 The Reaction Wheel Pendulum 

Rotor

Pendulum

 

Figure 1: The Reaction Wheel Pendulum 

The Reaction Wheel Pendulum (RWP), shown in Figure 1, is a simple pendulum 

with a rotating wheel at the end. The wheel is actuated by a 24-V, permanent magnet DC 

motor mounted on the pendulum. This motor can produce a torque on the wheel, causing 

the wheel to spin. According to Newton’s third law, there is an equal and opposite reaction 

torque on the motor, and hence on the pendulum. This reaction torque can be used to control 

the motion of the pendulum. We begin by obtaining the equations of motion for the RWP. 

Next, control of only the reaction wheel’s speed is examined. As part of this phase, we 

investigate counteracting the effect of friction in the motor by “friction compensation”. 

(Comment: A similar identification technique was used in Lab 5 to test frictionless motor.) 

Finally control of the complete RWP is considered.  

1.2 Derivation of Mathematical Model 

The first step in any control system design problem is to develop a mathematical 

model of the system to be controlled. Nonlinear models will first be derived using the 

Figure 2: Schematic Diagram 
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Lagrangian approach. These models will later be linearized, and the linear models will be 

used to design control strategies. 

A schematic diagram of the RWP is shown in Figure 2. We have chosen the angles 

as in Figure 2 because it is natural to use gravity to line up the pendulum hanging down. 

The angle p is the angle of the pendulum arm measured counterclockwise from the vertical 

when facing the system, and r is the wheel angle measured likewise. 

The RWP is provided with two optical encoders.  One encoder is attached to the 

fixed mounting bracket with its shaft attached to the pendulum link. It thus provides a 

measure of the relative angle between the pendulum and the fixed base. The other encoder 

is attached to the motor fixed at the end of the pendulum. Its shaft is attached to the rotating 

reaction wheel and thus provides the relative angle between the pendulum and wheel.  Their 

values are initialized to zero at the start of every experiment. (Comment: That’s why when 

you run your control later in Chapter 4, 6, and 7, make sure the pendulum is initialized at 

its resting position with the motor at the bottom.) 

Looking at Figure 2, note that 𝜃𝑟 is the angle of the reaction wheel measured from 

the vertical axis.  Therefore 𝜃𝑝 = 𝜑𝑝 , 𝜃𝑟 = 𝜑𝑝 + 𝜑𝑟 where the encoder angles for the 

pendulum and rotor are 𝜙𝑝 and 𝜙𝑟. 

𝜃𝑝 = 𝜙𝑝  

𝜃𝑟 = 𝜙𝑝 + 𝜙𝑟
. (1) 

We defined 𝜃𝑟 in this fashion in order to simplify the kinetic energy equations which now 

makes kinetic energy about 𝜃𝑝 and 𝜃𝑟 independent of each other.   

A convenient way to derive equations of motion for electromechanical systems is 

the Lagrangian method. The Lagrangian method allows one to deal with scalar energy 

functions rather than vector forces and accelerations as in the Newtonian method and is, in 

many cases, simpler. 

The RWP has two degrees of freedom. We take as generalized coordinates the 

angles θp of the pendulum and θr of the rotor as shown in Figure 2. We also introduce the 

following variables:  

mp mass of the pendulum and motor housing/stator 

mr mass of the rotor 

m combined mass of rotor and pendulum 

Jp moment of inertia of the pendulum about its center of mass 

Jr moment of inertia of the rotor about its center of mass 

ℓ𝑝 distance from pivot to the center of mass of the pendulum 

ℓ𝑟 distance from pivot to the center of mass of the rotor 

ℓ distance from pivot to the center of mass of pendulum and rotor 

k torque constant of the motor 

i input current to motor 

(Comment: Please pay close attention to the three ℓ’s above, and you can draw a 

picture to visualize them if necessary or label them in Figure 2.) 
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We also introduce the quantity 

J = Jp + mpℓ𝑝
2
 + mrℓ𝑟

2
 (2) 

to represent the moment of inertia with respect to θp, and note the relationships 

m = mp + mr , (3) 

mℓ = mpℓ𝑝 + mrℓ𝑟 . (4) 

(Comment: J is the total inertia when considering a non rotating rotor attached to the end 

of the pendulum as an object. You treat rotor plus pendulum as an overall structure.) 

Lagrange’s Equations 

The Lagrangian method begins by defining a set of generalized coordinates 

𝑞1, 𝑞2, . . . , 𝑞𝑛, to represent an n-degree-of-freedom system. These generalized 

coordinates are typically position coordinates (distances or angles). 

 

Next, compute the kinetic energy 𝐾, and the potential energy 𝑉 in terms of these 

generalized coordinates. Typically, potential energy is only a function of the generalized 

coordinates, but kinetic energy is a function of the generalized coordinates and their 

derivatives. 

 

In a multi-body system, the kinetic and potential energies can be computed for 

each body independently and then added together to form the energies of the complete 

system. This is an important advantage of the Lagrangian method and works because 

energy is a scalar-valued function, as opposed to a vector-valued function. 

 

Once the kinetic and potential energies are determined, the Lagrangian, 

𝐿(𝑞1, . . . , 𝑞𝑛, 𝑞̇1, . . . , 𝑞̇𝑛), is then defined as the difference between the kinetic and 

potential energies. The Lagrangian is therefore a function of the generalized coordinates 

and their derivatives. 

𝐿 = 𝐾 − 𝑉 

Finally, it can be shown that the equations of motion all have the form 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕̇𝑞𝑘̇
) −

𝜕𝐿

𝜕̇𝑞𝑘
= 𝜏𝑘             𝑘 = 1, . . . , 𝑛 (2) 

 

The variable 𝜏𝑘 represents the generalized force (or torque) in the qk direction. 

These equations are called Lagrange’s Equations and have the remarkable property of 

remaining invariant with respect to arbitrary changes of coordinates. 
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1-a Write down the equations for the kinetic energy 𝐾 and potential energy 
𝑉of the RWP.  The kinetic energy of the system is the sum of the kinetic 
energies of each degree of freedom.  How many degrees of freedom 
does the RWP have? (Re-read section 1.2 above and see Appendix A 
for help with the physics if you’re stuck.  If you would like more details, 
check out Wikipedia on Lagrangian Mechanics.)  

Derive kinetic energy and potential energy with respect to the generalized 

coordinates θp and θr.   

 

𝐾𝐸𝜃𝑝  = 

 

𝑃𝐸𝜃𝑝 = 

 

𝐾𝐸𝜃𝑟  = 

 

𝑃𝐸𝜃𝑟  =   0 

 

1-b Write Lagrange’s equations (Equation (2)) for this system to show that 
the equations of motion for the reaction wheel pendulum are given by 

Equation (6) below.  Here 𝑞1 = 𝜃𝑝,  𝑞1̇ = 𝜃𝑝,̇ 𝑞2 = 𝜃𝑟,  𝑞2̇ = 𝜃𝑟̇. The 

torque produced by the motor results in a torque 𝜏 acting on the rotor 

and −𝜏 acting on the pendulum. Use the relation 𝜏 =  𝑘𝑖 for motor 
torque.  

            Express the equations using three parameters: 𝜔𝑛𝑝
2 =

𝑚𝑔ℓ

𝐽
, 

𝑘

𝐽
, and 

𝑘

𝐽𝑟
. 

(Notice that 𝜔𝑛𝑝 is the frequency of small oscillations of the system 

around the hanging position.) 

𝐾 =  𝐾𝐸𝑇𝑜𝑡𝑎𝑙   = 

 

𝑉 =  𝑃𝐸𝑇𝑜𝑡𝑎𝑙   = 

 

𝐿 = 𝐾 − 𝑉  = 

 

Equations of Motion  = 
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Your final representation should be: 

{ 
𝜃̈𝑝 + 𝜔𝑛𝑝

2 𝑠𝑖𝑛 𝜃𝑝 = −
𝑘

𝐽
𝑖

𝜃̈𝑟       =   
𝑘

𝐽𝑟
𝑖

. (5) 

So far we have ignored friction. The mass on the pendulum is large enough that the 

friction on the pendulum link can be ignored. However, there is a significant amount of 

friction on the rotor link (mostly due to motor friction). Fortunately, the rotor is attached 

directly to the motor, allowing us to compensate for friction. The motor current i is 

generated by a pulse width modulation system, which is controlled from the computer. Due 

to current feedback, the current is proportional to the control command u from the 

computer. The control variable used in the computer is scaled so that 10 units correspond 

to maximum current. Therefore we can write 

𝑘𝑖 = 𝑘𝑢𝑢,  |𝑢| ≤ 10. (6) 

We assume the friction is a function of the rotor speed F(ωr). We will model friction 

in command units (units of 'u'). Applying Equation (6), 

{ 
𝜃̈𝑝 + 𝜔𝑝

2 𝑠𝑖𝑛 𝜃𝑝 = −
𝑘𝑢

𝐽
(𝑢 + 𝐹(𝜃̇𝑟))

𝜃̈𝑟       =  
𝑘𝑢

𝐽𝑟
(𝑢 + 𝐹(𝜃̇𝑟))

. (7) 

Finally, to clear up the clutter, we can also introduce variables 𝑎 = 𝜔𝑛𝑝
2 =

𝑚𝑔ℓ

𝐽
, 

𝑏𝑝 =
𝑘𝑢

𝐽
, and using (7), 𝑏𝑟 =

𝑘𝑢

𝐽𝑟
 becomes: 

{ 
𝜃̈𝑝 + 𝑎 𝑠𝑖𝑛 𝜃𝑝 = −𝑏𝑝(𝑢 + 𝐹(𝜃̇𝑟))

𝜃̈𝑟      =  𝑏𝑟(𝑢 + 𝐹(𝜃̇𝑟))
. (8) 

This is a satisfactory representation of the RWP. Before we begin its control, 

however, let us take a detour and consider speed control of a DC motor. This will allow us 

to model and compensate for friction. 
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2 Friction Identification Using the Reaction 
Wheel 

In this section we will identify the friction of the RWP’s DC motor. Recall that we 

made the assumption that the pendulum link has negligible friction. To help collect data 

for finding the friction coeficients, we will design a velocity control for the motor. Since 

velocity information is not directly available to us, we will use an approximation of the 

motor’s velocity.  

Safety note: When doing experiments in this part, remember a couple of things. 

Even though the motor controller has a safety mechanism to prevent the motor from 

spinning extremely fast, the combination of spinning fast and running for a long time will 

heat up or even burn out the motor. Be prepared to shut off the controller either when the 

system runs long enough for you to collect data or when it becomes unstable, either through 

the Simulink model or the switch on the amplifier board. Consider 200 rad/s as fast. 

In past labs we have analyzed the dynamics of a DC motor, using the armature 

voltage as the input. Here however, we select the armature current i as input. Then the 

motor becomes merely a current-torque transducer (see Figure 3), meaning electrical 

energy will be converted to mechanical energy. 

The torque τ is applied to the reaction wheel (rotor) having moment of inertia Jr and 

speed (relative to the motor housing) of ωr. There is also friction, due mainly to the motor 

brushes and represented as a torque 𝜏𝐹. So the motion of the wheel is given by 

𝐽𝑟𝜔̇𝑟 = 𝑘𝑖 − 𝜏𝐹 (9) 

using the motor (rotor) speed 𝜔𝑟 = 𝜃̇𝑟 as the output. Putting it in terms we are familiar 

with, we get the following: (Comment: The 𝜏𝐹in Equation (10) is “positive” while the 

𝐹(𝜃̇𝑟) in Equation (11)  is “negative”.) 

𝜔̇𝑟 = 𝜃̈𝑟 = 𝑏𝑟(𝑢 + 𝐹(𝜃̇𝑟)) (10) 

 

 

 

 

 

Figure 3: DC Motor Model 

MOTORi  = k i
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2-a Using Figure 4 as a guide, design a proportional controller with a rise 
time of 0.2s and no steady state error.  Use an input step of 100 rad/s. 
Assume br = 198 (rad/s). Simulate your controller using Simulink. 

2.1 Velocity Estimation 

Consider Equation 𝜔̇𝑟 = 𝜃̈𝑟 = 𝑏𝑟(𝑢 + 𝐹(𝜃̇𝑟)) (10) and again ignore friction 

for now.  Of course, this is an ideal model, so a few real-world issues must be dealt with.  

Recall from Section 1.2, page 5, that the control input is limited to 10. That is simple 

enough to simulate in Simulink. (Hint: Check out the “Saturation” block.) 

Another issue is the determination of angle from the encoder output. Think of the 

encoder as the Wheel of Fortune wheel; counting ticks tells you that it’s turning. (There’s 

also a provision for determining direction of spin; this is analogous to the “ticker” sounding 

different in either direction.) The ticks add as the angle changes. There are two issues here:  

First, how does the software know where “zero” is? By convention, zero is the 

encoder angle when you “Start” the run.  

Second, how do you determine angle from ticks? Since the motor encoder has 4000 

ticks/revolution, multiply by 2π/4000 to scale to radians. (The pendulum encoder has 5000 

ticks/revolution.) One other detail: the reaction wheel encoder and motor use opposite sign 

conventions in this setup. In other words, when a positive current is applied to the motor, 

it spins in a direction that the encoder calls negative. Therefore, you will need a -1 gain 

before the input to the motor. 

The encoder measures position. How can the velocity 𝜔 = 𝑑𝜃 𝑑𝑡⁄ be obtained? This 

is done either by using a transfer function that approximates a derivative or by using a 

discrete version of the same. We will implement both and compare them.  

A simple discrete version can be found by using Euler’s method (FPE pp.167, or 

FPE 3rd Ed pp. 138). It states that 

𝑑𝑓

𝑑𝑡
= 𝑙𝑖𝑚

𝛥𝑡→0

𝑓(𝑡)−𝑓(𝑡−𝛥𝑡)

𝛥𝑡
 (11) 

The discrete derivative approximation is implemented by using the “Unit Delay” 

block in Simulink. Even though this is a discrete approximation of the velocity, we will 

consider this velocity continuous for simplicity. Applying Equation (11) to our system, 

Figure 4: General Block Diagram of Velocity Controller. We assume friction 

is 0 here. 

 

CONTROLLER MODEL velocity ()


REF u

CL

K br /s
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𝜔(𝑡) ≅
𝜃𝑟(𝑡)−𝜃𝑟(𝑡−𝛥𝑡)

𝛥𝑡
 (12) 

Note: We will be using a sample period 𝛥𝑡 of 0.002s. 

 

The continuous derivative approximation can be understood by looking at the 

frequency response of the derivative function s. We want to keep the response similar at 

low frequencies, but refrain from amplifying the high-frequency noise. This is 

accomplished by placing a pole at a sufficiently high1 frequency, giving the transfer 

function 

𝑠

𝜏𝑠+1
, (13) 

where 1/τ is the pole location. 

For your continuous derivative, use Equation (13) with  = 1/50. Now that we have 

a velocity estimate, we can solve the following problem: 

 
1 Sufficiently high: application-specific, often selected iteratively by simulation or test runs. 
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2-b Implement your velocity approximations, and the controller designed 
above, in Simulink with the C2000 Microcontroller Blockset toolbox.  
A starter Simulink file is provided for you called part2b_starter.slx.   
Procedure for copying and opening the starter file: 
1.  Create a folder named after your NetID inside C:\matlab\ece486\. 
For example, if your NetID is jdoe2, create C:\matlab\me340\jdoe2 
2.  Copy the folder N:\labs\ECE486\final_project\part2 into 
C:\matlab\ece486\<yourNetID>. 
3.  Start Matlab 
4.  Change the current working directory to 
C:\matlab\ece486\<yourNetID>\final_project\part2 using the Matlab 
command window: “cd C:\matlab\ece486\<yourNetID>\part2” 
5.  Open the Simulink model by double-clicking on it in the MATLAB 
Current Folder browser. 
 
Procedure to check feedback positive direction: 
1.  Before you can implement your controller, you need to scale the 
Reaction Wheel C2000 Block’s optical encoder outputs 𝜙𝑝 and 𝜙𝑟 to 

radians  and add the -1 gain block before the motor input.  Using the 
scale factors given above, use two gain blocks to scale 𝜙𝑝 and 𝜙𝑟to 

radians and one more gain block to add a -1 before the motor input. 
2.  Use a Sum block to form 𝜃𝑟. 

3.  Use Scope blocks to plot the values of 𝜃𝑝 and 𝜃𝑟.  

4.  Run this Simulink file (Monitor and Tune) with the motor off and 
when time start progressing look at the scope plots 𝜃𝑝 and 𝜃𝑟.  

5.  Gently move the pendulum and motor to check if their positive 
directions are the same as Figure 2.  If not add a negative in the gain 
block to correct the direction.  You will not be using 𝜃𝑝 or 𝜃𝑟 in this 

section 2, but you now have its positive direction verified for the 
remaining sections.  
 
Implement P Controller: 
1.  Now implement the two velocity approximations and your 
controller, designed 2-a, using 𝜙𝑟as the feedback signal.  Here we 

are assuming the pendulum angle 𝜃𝑝is not moving.  You can gently 

hold the pendulum when the controller starts moving the motor.  Use 
a Simulink “Manual Switch” to allow your Simulink implementation to 
switch between using as feedback the two velocity approximations.  
Make sure to plot velocity so you can compare the two 
approximations.   
2.  Compare the simulated response in 2-a with the C2000 
Microcontroller Blockset response in 2-b. What is the source of this 
discrepancy? 
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The answer to item 2 leads us to the ultimate goal of this section: friction 

identification and compensation. 

2.2 PI Control for Friction Identification 

As you know, we can counteract a constant disturbance by adding an integrator. 

2-c Add an integral term to your 2-b P control implementation to create a 
PI controller that regulates the motor to 100 rad/s.  To help you with 
this, there is another starterfile, part2c_starter.slx (already copied to 
your part2 folder) that shows you how to reset the integrator when 
the Motor Enable button is pressed, or the manual switch is flipped. 
So you will be copying your P control implementation from 2-b into 
this part2c starter file to create your PI controller.  Start with Kp equal 
to your 2-b value and Ki equals to this same Kp value.  Hand tune Kp 
and Ki until you have a response with 0.2 second rise time, less than 
5% overshoot and zero steady state error.  In addition to scoping the 
speed of the motor, use a Display block to display the control effort 
applied to the motor.   

Because the motor has damping and static friction, the control effort to hold the 

motor at a desired speed is nonzero.  Using this fact we can command the motor to one 

velocity at a time and record the control effort needed to regulate the motor at that speed.  

This control effort is the amount of effort the motor needs to overcome friction.   

Saying it another way, consider Equation 𝜔̇𝑟 = 𝜃̈𝑟 = 𝑏𝑟(𝑢 + 𝐹(𝜃̇𝑟)) (10) at 

steady-state, with friction included.  Remember 𝐹(𝜃𝑟̇) is negative. 

𝜔̇𝑟 = 𝜃̈𝑟 = 𝑏𝑟(𝑢 + 𝐹(𝜃̇𝑟)) = 0 (14) 

We see that for non-zero friction, the control effort will be non-zero as well. In fact, 

the value of friction for any velocity is merely the steady-state control effort for a setpoint 

of that velocity. In other words, 

𝑢 = −𝐹(𝜃̇𝑟) (15) 

2-d Run the motor at various speeds (i.e. vary the setpoint of the PI 
controller to 150, 100, 75, 50 and 25 radians/second) and record the 
steady-state control effort for each speed. Do this for both positive 
(counter-clockwise) and negative (clockwise) velocities. Fit this to two 
lines (hint: see MATLAB command “polyfit”), and note the static, 𝑐, and 
dynamic, 𝑏, frictions in both directions (they will probably differ). 

Write down the expression for 𝐹(𝜃̇𝑟). 
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Now that we have characterized friction, we can explore a way of negating its 

effects on our system. 

2.3 Friction Compensation for Velocity Control 

Friction affects all systems, and can add to or modify system dynamics, bring in 

noise, decrease resolution, and introduce offsets. We have implemented one method of 

dealing with offsets introduced by Coulomb friction – integral control. However, the 

dynamics of the system are still affected by friction. By considering friction as a linear 

function (a velocity gain and offset for each direction), we see another way of dealing with 

it. Since we now know the value of friction (in control units;  see Equation (6) and the 

associated discussion on page 5) for any speed, we can let Simulink “adjust” for friction 

by counteracting its value as a function of speed (see Figure 5).  
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2-e Implement friction compensation.  
  
Start with the PI control you developed in 2-c.   
 
Typing “fricblocks” at the Matlab prompt opens the block that you 
used in Lab 5 to calculate asymmetrical friction.  Enter the c+, b+, c-, 
b- values you found in 2-d. 
    
Design your Simulink model using two more manual switches so that 
you can switch off your PI control and just apply a constant zero, and 
also a switch that switches on or applies zero for the friction 
compensation part.  (Looking back at the Lab 5 friction compensation 
Simulink implementation may help you with the placement of these 
manual switches.)   
 
Start out with your PI control switched off and simply implement 
friction compensation. What do you expect will happen? Reason out 
what you expect to see, then gently hold the motor and manually spin 
the motor in either direction and see what happens.  
 
Tune your friction b and c values in both directions in order that when 
you manually spin the motor it keeps on spinning in the same 
direction for at least 20 seconds.  Most of the time you will only need 
to adjust b+ and b-.  If your motor does not move when first enabled 
your c+ and c- are more than likely good values.  Use these tuned 
b+, c+, b-, c- values as your friction values.   
 
Now switch on just your P controller by zeroing the Ki gain.  A 
proportional control should now regulate the system to (or very close 
to) the desired velocity. Is integral control still needed, or is 
proportional control sufficient?  Answer this question by setting Ki 
back to the value you tuned in 2-c.  Observe the effects of PI control 
with friction compensation as you use your finger to add a very small 
additional damping by letting the flywheel rub against your finger as it 
spins.     
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Now that friction is well modeled, we can return to the overall Reaction Wheel 

Pendulum. First, we will do some System Identification and Model Verification, then 

finally delve into control. 

FRICTION-

LESS 

MOTOR

FRICTION

 velocity ()

F = -(b+c)

FRICTION 

COMPENSATION

F' = b+c

OPEN-LOOP SYSTEM SHOWING FRICTION EXPLICITLY OPEN-LOOP SYSTEM WITH FRICTION COMPENSATION

PLANT

u
CL 

FRICTION-

LESS 

MOTOR

FRICTION

 velocity ()

F = -(b+c)

PLANT

u
CL

Figure 5: Functionality of Friction Compensation 
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3 System Identification 

We can now determine the parameters of the Reaction Wheel Pendulum (RWP). 

Here we set up the RWP in the standard configuration. The parameters can be determined 

from physical construction data and by direct experiments on the system. It is useful to 

combine both methods to find all the parameters, and to make cross-checks. It also verifies 

that our mathematical model is reasonable. 

By measuring the dimensions of the components, weighing them, and computing 

moments of inertia using simplified formulas we find: 

mp  = 0.2164 kg 

mr  = 0.0850 kg 

Jp  = 2.233ּ10-4 kgּm2 

Jr  = 2.495ּ10-5 kgּm2 

ℓ𝑝  = 0.1173 m 

ℓ𝑟 = 0.1270 m 

3-a Use the relations and definitions given in Section 1.2 to get values for 
J, m, ℓ, and 𝜔𝑛𝑝. Also find 𝜔𝑛𝑝′. (Defined by Equation (16) below) 

In order to verify the natural frequency, we can do a free swing test (below). 

3.1 Checking the Harmonic Frequency 

3-b Use the provided part3.slx file, do not flip on the motor amplifier for this 
run, and start the Simulink file with the Pendulum hanging in the down 
position. Once the Scope plot for 𝜃𝑝  and the Scope for 𝜙𝑟  start 

plotting, move the pendulum to approximately 90 and let it swing 
freely. When the wheel stays stuck to the pendulum, i.e. the encoder 
reading 𝜙𝑟 is constant, determine the frequency of oscillation 

(𝜔𝑛𝑝′𝑚𝑒𝑎𝑠). 

Procedure: 
1. Create a folder named after your NetID inside C:\matlab\ece486\ if 

you haven’t done so already. For example, if your NetID is jdoe2, 
create C:\matlab\me340\jdoe2 

2. Copy the folder N:\labs\ECE486\final_project\part3 into 
C:\matlab\ece486\<yourNetID>. 

3. Start Matlab 
4. Change the current working directory to 

C:\matlab\ece486\<yourNetID>\final_project\part3 using the Matlab 
command window: “cd C:\matlab\ece486\<yourNetID>\part3” 

For you to find: 

J  =  kgּm2 

m =   kg 

  =  m 

ωnp =  rad/s 

ωnp′ =  rad/s 

measured frequency of oscillation: 

ωnp′meas =  rad/s 
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5. Open the Simulink model by double-clicking on it in the MATLAB 
Current Folder browser.  

This measured frequency is different from ωp because the rotor is contributing to 

the moment of inertia. The quantity you measured is actually 

𝜔𝑛𝑝′ = √
𝑚𝑔ℓ

𝐽+𝐽𝑟
 (16) 

Compare the experimental value with the theoretical value, computed from the 

parameters (all known).  

Notice how ωnp and ωnp′ are very close in value.  For that reason, we can use ωnp′ 

as our identitied value for ωnp.
 

Notice also that the decay in the swing amplitude is slow. On the other hand, if the 

rotor is excited with the maximum current, and then the current is removed, it takes only a 

few seconds to come to complete rest. In both cases, friction is the only deceleration force 

(for the pendulum, consider conservation of energy and for the rotor, apply Newton’s first 

law of motion). This helps to validate our assumption that the friction in the pendulum link 

is negligible, but friction in the motor is not. 

3.2 Determination of Parameters (𝒃𝒑, 𝒃𝒓) 

There are two parameters that we still don’t know. These are bp and br. By 

examining Equation (17), we see a way to find bp and br. 

{ 
𝜃̈𝑝 + 𝑎 𝑠𝑖𝑛 𝜃𝑝 = −𝑏𝑝(𝑢 + 𝐹(𝜃̇𝑟))

𝜃̈𝑟      =  𝑏𝑟(𝑢 + 𝐹(𝜃̇𝑟))
 (17) 

Our sensors directly measure 𝜃𝑝,𝜃𝑟.  We developed an approximation for 𝜑̇𝑟 in 

section 2.1 and you can use the same velocity approximation for 𝜃̇𝑝and 𝜃̇𝑟.  If we estimate 

𝜃̈𝑝and 𝜃̈𝑟by differentiating again and use our friction model from section 2.3 to replace 

𝐹(𝜃̇𝑟), the only unknowns in the top equation of (17) are bp and br. Solving for them is 

trivial, assuming we can find the second derivative.  Alas, Figure 6 shows that the first 

derivative is noisy, and the second derivative is worthless.  A better approach would find a 

polynomial fit for 𝜃𝑝,𝜃𝑟, and differentiate this fit to get clean values for 𝜃̇𝑝,𝜃̇𝑟,𝜃̈𝑝and 𝜃̈𝑟.  

These clean values can then be put into Equation (17) to solve for the torque constants.  In 

practice, a cubic fit of the RWP response to a step input from rest gives good results. 
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Figure 6: Derivative approximations add significant noise 

3-c Use the method described above to find bp and br. The given Simuink 
file, part3.slx, collects the needed data in the scope labeled “Theta_p, 
Theta_r, & control effort”. Each time before running the Simulink file, 

bring the pendulum up to about 90  and let it swing freely until stop. 
This lets the pendulum find its own zero position and usually results in 
a better place to start the system for the identification run.  Now run 
(Monitor and Tune) the Simulink file.  When the realtime code has been 
loaded and running, time “t=” will start increasing in the bottom right 
corner of your Simulink model.  At this point flip the motor amp switch 
on and then click the “Enable PWM / Disable PWM” button in Simulink 
model. A step input will be given to the motor when this Simulink button 
is clicked. A partial m-file is provided for you on the lab website that 
will help you use this collected data to find bp and br   The given 
Simulink file uses a step of magnitude 5 for u.   

Another way to determine bp and br (and thus ku ), uses equation (6). The i is 

determined for the maximum input u of 10. Properties of the motor and controller tell us 

the value of imax and k, giving 

bp = 1.08 

br = 198 

Your results should approximately agree (within 30%). For the remainder of this 

lab, use your identified values for ωnp, bp and br. 
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4 Stabilizing the Inverted 
Reaction Wheel Pendulum 

4.1 Linearization and Controllability 

The Reaction Wheel Pendulum (RWP) has equations of motion, ignoring friction, 

given by 

{ 
𝜃̈𝑝 + 𝑎 𝑠𝑖𝑛 𝜃𝑝 = −𝑏𝑝𝑢

𝜃̈𝑟      =  𝑏𝑟𝑢
 (18) 

4-a Linearize this system about the equilibrium position of 𝜃𝑝 = π. Write 

the state-space model for this system in the blanks provided in 
Equation (19) and check for controllability from the single input u. What 
are the system’s open-loop poles (or eigenvalues). Note: Your new 
state variables are delta-angles, where 𝛿𝜃𝑝= 𝜃𝑝 – π and 𝛿𝜃𝑟= 𝜃𝑟 − 0. 

  𝐱̇    =                 𝐀                𝐱    +      𝐁 𝑢 

[

  

] = [

    

]

[
 
 
 
 
𝛿𝜃𝑝

𝜃̇𝑝

𝛿𝜃𝑟

𝜃̇𝑟 ]
 
 
 
 

+ [

 

] 𝑢     (19) 

The system should be controllable; otherwise we would need to add another 

actuator to be able to complete the project. 

4.2 Inverted Stabilization Using Two-State Feedback 

When designing a State Feedback controller (𝑢 = −𝑘𝑥) we usually talk about 

placing the poles of the closed loop system.  These poles need to be stable and responsive 

enough to make the system respond in a desired fashion.  But where to place the poles, 

especially when you are first working with a new system, is a good question.  For the 

reaction wheel pendulum we only care about the pendulum stabilizing in its upright 

position.  The angle of the motor does not matter.  (We will find soon that the velocity of 

the motor is important though.)  So at first let’s just design a 2 state feedback controller 

that only uses the pendulum’s feedback.  This way the linearized closed loop system will 

be 2nd order and you can use your knowledge of the ideal second order system’s 

characteristic equation 𝑠2 + 2𝜁𝜔𝑠 + 𝜔2 to choose two poles.  Here we are only considering 

the top left 2X2 portion of your linearized A matrix and the first two entries of the B matrix, 

therefore a 2nd order system. 
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4-b Design a 2 state-feedback controller for the RWP using the MATLAB 
command place. Choose poles by trial and error by finding the roots 

of 𝑠2 + 2𝜁𝜔𝑠 + 𝜔2 given the constraints:  
1. 𝜔 > 𝜔𝑛𝑝 so the closed loop dynamics are faster than the open-

loop dynamics.   

2. 𝜁 < 1/√2.  
3. Keep both K values less than 400.  
Simulate your system starting with part4simulation_starter.slx which 
has the nonlinear “Reaction Wheel Block Diagram Model” (See 
Appendix B) and “Reaction Wheel Animation” blocks. For this 
simulation don’t bother estimating velocity; just use the exact states 
from the model block. Also note that your control effort should 
connect to the given Saturation Block so that control effort is 
saturated to the maximum motor input -10 to 10.     

Simulate  Initial Condition (IC) deviation (𝛿𝜃𝑝 or 𝛿𝜃̇𝑝 nonzero),  

 a pulse (simulating a tap) disturbance input to the pendulum arm 
(τp) with duty cycle of 5% and period of 4 seconds,  
 a constant disturbance input to the pendulum arm.  
Is the response satisfactory (i.e. stable and fairly fast)? Now look at 
rotor velocity. Do you see any problems? 
 
Procedure: 

 1.  Create a folder named after your NetID inside C:\matlab\ece486\ if 
you haven’t done so already. For example, if your NetID is jdoe2, 
create C:\matlab\me340\jdoe2 
2.  Copy the folder N:\labs\ECE486\final_project\part4 into 
C:\matlab\ece486\<yourNetID>.  This will copy all the files you need 
for part 4. 
3.  Start Matlab 
4.  Change the current working directory to 
C:\matlab\ece486\<yourNetID>\final_project\part4 using the Matlab 
command window: “cd C:\matlab\ece486\<yourNetID>\part4”  
5.  Open the Simulink model by double-clicking on it in the MATLAB 
Current Folder browser. 

 

Note: Remember that the controller uses delta states, whereas the nonlinear model 

outputs absolute states.  

Comment: In order to fill out the first row in the below table, you need to test IC 

deviations for both 𝛿𝜃𝑝 and 𝛿𝜃𝑝̇ But you only test one at a time, i.e., for example, when 

you test IC deviation, add small deviation to 𝛿𝜃𝑝 but keep zero deviation for 𝛿𝜃𝑝̇. Then 

you test 𝛿𝜃𝑝̇ similarly.  
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Table 1: Robustness Comparisons 

 Two-State Feedback 

(4.2) 

Three-State Feedback 

(4.3) 

Observer 

(5.1) 

 Max IC deviations 𝛿𝜃𝑝 𝛿𝜃̇𝑝 𝛿𝜃𝑝 𝛿𝜃̇𝑝 𝛿𝜃𝑝 𝛿𝜃̇𝑝 

 Max pulse    

 Max constant 

disturbance 

   

 

 

As you can see, the rotor velocity stays constant at steady-state without any 

disturbances. However, with a constant disturbance, however small, the motor undergoes 

a constant acceleration to counteract it, which causes the velocity to increase without 

bound. Since we have a bound on velocity (there is always a bound on velocity!), this is 

not practical for implementation. Therefore we must feedback the rotor velocity 

information. 

This may raise a question: In simulation, if a constant u can cause velocity to 

become arbitrarily large, why can’t that happen in our system? Because as velocity 

increases, friction increases, and (u-F) decreases until friction effectively “cancels out” u! 

4.3 Inverted Stabilization Using Three-State Feedback 

Consider the eigenvalues of the 4-state state-space model you found in Question 4-

a. The zero eigenvalues represent the rotor position and velocity. Our goal is to pull the 

velocity eigenvalue into the LHP, but leave the position eigenvalue alone. This will 

stabilize the rotor velocity, while still ignoring its position. 

4-c Using the same constraints as 4-b, design a 3-state feedback 

controller with 𝜃𝑝, 𝜃̇𝑝, and 𝜃𝑟̇ = 𝜑𝑟
̇ + 𝜑̇𝑝 as the feedback and simulate 

in Simulink.  Again for this simulation do not estimate the velocity, 

just use the exact states from the model block.2  Place the 𝜃̇𝑟 
eigenvalue between the other two LHP poles. (Hint: Use MATLAB 
“place” – just keep the fourth pole at zero. This makes the fact that 
we’re ignoring 𝜃𝑟 evident.) Simulate conditions , , and  from 4-b 
again. Record in Note: Remember that the controller uses delta 
states, whereas the nonlinear model outputs absolute states.  

Comment: In order to fill out the first row in the below table, you need to test IC 

deviations for both 𝛿𝜃𝑝 and 𝛿𝜃𝑝̇ But you only test one at a time, i.e., for example, when 

 
2 We're not asking you to estimate the velocity in the simulation because we want to start the 

pendulum around π radians. This requires you to input the correct initial value into the velocity estimate 

transfer functions by subtracting 𝜃𝑝’s initial condition from 𝜃𝑝 and 𝜃𝑟, which would make your Simulink 

diagram more complicated and harder to manage.       
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you test IC deviation, add small deviation to 𝛿𝜃𝑝 but keep zero deviation for 𝛿𝜃𝑝̇. Then 

you test 𝛿𝜃𝑝̇ similarly.  

 

 

 

Table 1 the maximum IC deviation that the system can correct, as well as 
the maximum tap.  
 
Using the starter file part4_implement_starter.xls implement this 
controller on the actual RWP.  Here you will have to estimate velocity 
using the method you chose in 2-b.  If the RWP is too sensitive to 
stay balanced, check the rotor velocity. If the RWP is spinning up to a 

high velocity before falling, then your 𝜃̇𝑟 feedback gain may be too 

small. Adjust the 𝜃̇𝑟 gain until you get a satisfactory response, then 
show it to your TA. When the RWP is successfully stabilized, you 
should see limit cycle behavior3 . 

4-d Add to your 4-c implementation friction compensation (which you 
designed in Question 2-e) and observe the change in behavior.  
 
𝑢 =  −𝑘 ∗ 𝑥 + 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛  
 
Demonstrate it to your TA. 

We will next explore the observer’s approach. 

 
3 Persistent (but not necessarily precisely) repeating behavior that does not die out is called Limit 

Cycle Behavior. 
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5 Observer Design 

We will now design an observer for the Reaction Wheel Pendulum (RWP) to 

estimate the states of the full state feedback controller we designed previously. The 

observer will estimate both velocities of the system. And since we’re designing a full-order 

observer, it will also “estimate” both positions. 

Look back at your full-state feedback design; you pulled all of the open-loop poles 

except the 𝜃𝑟 pole into the left half plane. When we design an observer, however, we must 

place all of the observer poles in the left half plane; our criteria being: “significantly 

farther” than the desired closed-loop poles. See Figure 7 for an illustration of this (not to 

scale, and relative pole locations may vary by design). 

Figure 7: Illustration of Pole Locations 

5.1 Observing Four States Together 

 

RWP
coordinate 

change

Observer


p


r

observed

states

 
p

 
r

u
- K

 

Figure 8 shows the structure of our closed-loop system with observer-based control. 

In Simulink, the observer block can be modeled as a State-Space block. However, in order 

to do so, we need to define the A, B, C, and D matrices (where the state equation is defined 

as {𝒙̇ = 𝑨𝒙 + 𝑩𝑢, 𝒚 = 𝑪𝒙 + 𝑫𝑢 }). 

The standard differential equation for an observer is 

𝒙̇̂ = 𝑨𝒙̂ + 𝑩𝑢 + 𝑳(𝒚 − 𝒚̂) 

Figure 8: Block Diagram of System with Observer 

OPEN-LOOP POLES CLOSED-LOOP POLES OBSERVER POLES
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𝒚̂ = 𝑪𝒙̂ + 𝑫𝑢 (20) 

Keeping in mind that we want 𝒙̂ as the states, 𝒙̂ as the outputs, and both delta-angles 

(collectively called 𝒚, where𝒚 = [θp , θr]
T ) as well as u as the input, Equation (20) can 

be manipulated to give 

{
𝒙̇̂ = (𝑨 − 𝑳𝑪)𝒙̂ + [𝑩 𝑳] [

𝑢
𝒚]

𝒛 = 𝑰𝟒𝒙
 (21) 

where z represents the output of the observer. You should be comfortable going 

from Equation (20) to Equation (21). (Hint: when doing matrix algebra, always check 

dimensions!) 

In particular, what is C? From Equation (20), we see that y and 𝒚̂ must have the 

same dimension, and, in order for their difference to be meaningful, must represent the 

same physical phenomena (e.g., subtracting a velocity from an angle is meaningless). 

since











== CCx,y   (fill in your C matrix) 

 Also, why 𝑰𝟒? (𝑰𝟒represents the 4 × 4 identity matrix) Because we want to output 

all of our states individually. If we used a scalar z and defined 𝑧 = 𝑥̂1 + 𝑥̂2 + 𝑥̂3 + 𝑥̂4, 

then instead of having more information from the observer, we would actually have less! 

5-a Using the MATLAB place command to find a L matrix that places the 
observer poles significantly farther than your closed-loop poles (as 
designed in Section 4.3). Five to ten times faster is a good distance. 
Keep these poles near or on the real axis. Also note that the ‘place’ 
command cannot solve for repeated roots. Check the observer’s 
eigenvalues, eig(A-L*C) using MATLAB eig to double check you placed 
the poles correctly.   

    

5-b Simulate your observer design in Simulink.  You can start with your 3-
state simulation you made in part 4.  Test and record the same things 
you tested in Question 4-b. How does this controller compare to the 
three-state feedback controller? Now vary the nonlinear model’s 
parameters slightly. Does the controller still work? 

The extremely high sensitivity of this controller to variations in the plant may 

surprise you, but in the next section we will explore the RWP model in more depth in order 

to understand why this is the case, and find a way to modify your controller in order to 

make it less sensitive to plant variations. 
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5.2 Decoupling and Redesigning the Observer 

Recall that the state-space model for our system has the form 

𝒙̇ = [

0 1 0 0
𝑎 0 0 0
0 0 0 1
0 0 0 0

] 𝒙 + [

0
−𝑏𝑝

0
𝑏𝑟

] 𝑢 (22) 

We see that A has a specific form – the top right four values and the bottom left 

four values are zero. There is a special term for that form – block diagonal. Let us take a 

small digression and explore the implications of A being in block diagonal form. If we 

rewrite the system as 

[
𝒙̇1,2

𝒙̇3,4
] = [

𝑴 0
0 𝑵

] [
𝒙1,2

𝒙3,4
] + [

𝑷
𝑸

] 𝑢 (23) 

where the “elements” of these vectors and matrices are now vectors and matrices 

themselves, this representation of A makes A look like a diagonal matrix. Separating the 

two vector equations, we get 

{
𝒙̇1,2 = 𝑴𝒙1,2 + 𝑷𝑢

𝒙̇3,4 = 𝑵𝒙3,4 + 𝑸𝑢
 (24) 

And then writing each vector equation as a system, 

{
𝒙̇1,2 = [

0 1
𝑎 0

] 𝒙1,2 + [
0

−𝑏𝑝
] 𝑢,   𝑪1,2 = [  ]

𝒙̇3,4 = [
0 1
0 0

] 𝒙3,4  + [
0
𝑏𝑟

] 𝑢,   𝑪3,4 = [  ]
 (25) 

This is quite significant. It says that the dynamics of these subsystems are 

decoupled, or independent of each other. This is a direct result of A being in block diagonal 

form. (Note that this does not mean that you can control the dynamics of both arbitrarily – 

the same input u applies to both.) Another implication is that the eigenvalues of A are the 

union of the eigenvalues of M and the eigenvalues of N. 

This last fact can be used to our advantage. We wish to make the observer response 

converge very quickly, and therefore want to set the eigenvalues of (A-LC) to be fast. 

Remember that we’re now designing the internal dynamics of the observer; the input u is 

not applied here. Here is the breakdown of (A-LC) designed in 5-a and 5-b: 

𝑪 = [
1 0 0 0
0 0 1 0

] ,  𝑳 = [

𝑙11

𝑙21

𝑙31

𝑙41

𝑙12

𝑙22

𝑙32

𝑙42

] ,  (𝑨 − 𝑳𝑪) = [

−𝑙11 1 −𝑙12 0
𝑎 − 𝑙21 0 −𝑙22 0
−𝑙31 0 −𝑙32 1
−𝑙41 0 −𝑙42 0

](

26) 

So the first and third columns can be modified. Must  the values that are not on the 

block diagonal be nonzero? For example, look at l12. It determines the effect of 𝑥̂3 on 𝑥̇̂1. 

But since the dynamics of the first two states are decoupled from the last two, that term is 

unnecessary. In other words, we can arbitrarily determine the dynamics of the observer 
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using only l11, l21, l32, and l42! In fact, the other terms only serve to make the observer more 

sensitive to model errors and noise. 

If the dynamics are independent, then why did MATLAB give nonzero off-diagonal 

terms? Answer: the algorithms MATLAB uses do not check for independence. 

5-c Split up the system as shown in Equation (25), and use MATLAB to find 
the 2 small L matrices.  Then combine the two L matrices put their 
values in the l11, l21, l32, and l42 positions.  Compare this new L matrix 
with the L matrix found in Question 5-a. Now take the L matrix found 
in Question 5-a and zero out the terms off the block diagonal. Compare 
again. Is it important to split up and redesign, or do you find it sufficient 
just to zero out the terms off the block diagonal? (Hint: Look at their 
effects on the observer eigenvalues.) Repeat Question 5-b with the 
new L matrix. Any improvement? 

Now we have a good design, and are ready to put it to work on the actual RWP. 

5-d Copy and rename the Simulink file you developed in 4-c, 4-d to 
implement your 3-state feedback controller.  Give it a name with “part5” 
in the name.  Then use this file as a starter to implement your observer 
design on the RWP. How does this controller compare to three-state 
feedback control?  In most systems if you have a direct measurement 
of a state like we do with the optical encoders, the direct velocity 
measurement is more robust than using the linearized approximate 
model in an Observer.   
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6 Up and Down Stabilizing Control 

We will now explore the topic of switching control. We will first discuss this topic, 

and then consider the example of the RWP, which we are quite familiar with. We can then 

design a switching controller for the RWP without much trouble. 

Most systems that we control are nonlinear. We simply choose an operating 

condition and linearize about that condition. However, what if we want to control this 

system over a broader range of operating conditions? For example, airplanes are extremely 

nonlinear systems. Fighter jets are even more so, due to the enormous range of airspeeds 

and maneuverability requirements. A nonlinear controller would be extremely complicated 

and may even become unstable near the extremes, due to modeling errors. The approach 

used is to switch between many different linear controllers based on the states. Each 

controller uses a different model for the system, and applies a different type of controller, 

but all share the broad goal of keeping the jet in the sky4. The difficult aspect of switching 

control is handling the switching transients: When switching from one model and controller 

to a completely different one, how do you guarantee that the system won’t go unstable? 

To explore this further, let us consider again the RWP. Unlike a fighter jet, a 

pendulum has only two equilibrium points: up and down. We have designed a controller to 

balance up. If we make a switching control to balance down when the pendulum swings 

past the upward stabilizable region, will we be able to guarantee stability? Keeping in mind 

that the downward equilibrium is a stable equilibrium, it is not rocket science to determine 

that after the switching transients, the down controller will be able to stabilize the 

pendulum. 

 

 

 

 

 

 

 

 

6-a Design a switching controller that will stabilize the RWP in either the 

up or down position based on the pendulum angle p. To make your 
life easier, use three-state feedback controllers as in Section 4.3. 

(Hint: use the “Switch” block controlled by a function of p—see figure 
above.) First simulate it, then implement it on the RWP. 

 
4 Controlling a nonlinear plant by switching between a family of linear controllers, each tuned for 

certain operating conditions, is called gain scheduling  

Figure 9: Implementing Switching 

Control 
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If you don’t see the effects of the controller in the down position, swing the 

pendulum freely and see how long it takes for the swinging to stop. There should be a 

significant decrease in that time with your new controller. 
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7 Swing-Up Control 

After all that talk of avoiding nonlinear control by using switching control, let us 

now look at nonlinear control itself. It can be a very useful tool, especially when it is used 

along with other control algorithms. We can use switching control to switch between a 

nonlinear controller and a linear controller. This may sound complicated, but actually 

“switching control” is nothing more than an algorithm that switches between multiple 

controllers. We can use a nonlinear controller to get the system into the region that is 

stabilizable with linear control, and then switch over to the linear controller. That is the 

approach we will use to swing-up the pendulum and then stabilize it at the top position. 

The concept of nonlinear control may sound daunting, but look at the problem in 

this way: how can we pump energy into this system properly, and how can we get the 

system to recognize that it is in the “region” of stabilizability? A clue lies inside that 

question: energy. We can measure kinetic and potential energy, we want a certain setting 

of kinetic and potential energy, and we can apply kinetic energy. 

Let us look at this from a naïve point of view. Assume that we want to tap the 

pendulum really hard at the bottom, but just hard enough to get it to swing up and come to 

rest (briefly, of course) at the top. (Do not try this! The RWP is fragile.) You can imagine 

tapping it harder or softer based on how high up it swings. Is there a way to figure out just 

how hard you need to tap it? Yes! The energy at the bottom is purely kinetic, and you want 

the energy at the top to be purely potential. Therefore, you can compute how intensely you 

must tap. 

On the actual RWP, you have the added advantage that the motor is mounted on 

the pendulum, so you do not need to tap. Rather, you can apply a long-term force (see 

Figure 10). But there is a disadvantage to this: the force is limited by the maximum velocity 

of the rotor (as we have seen before). It turns out that the motor cannot provide the 

necessary energy input in a single swing. Therefore, the motor must dump some energy 

during one swing, then dump energy in the other direction during swingback, and so on 

until the RWP has the correct amount of energy. Figure 10 shows a plot of the intersection 

pendulum energy and the ideal energy when the pendulum is balanced in an inverted 

position   

There is, of course, the added complication of friction. To account for this, we can 

simply dump in more energy than required without friction and hope it works. This process 

takes much trial and error. 

This is only one of many methods of doing swing-up control. There are many 

implementation details involved in making a swing-up controller. Have fun! 

Figure 10: Illustration of Nonlinear Swingup Control.   

Light grey is the starting position, black is the final position after applying u. 

u < 0 u > 0 u < 0 u > 0 u < 0 u > 0
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Appendix A: Useful Physics Theory 

 

Conversions (units of MKS) 

• Length (m), Mass (kg), and Time (s) are basic units. 

• Force is mass • acceleration, and has units of newtons (N = kg•m/s2). 

• Energy is force applied over a certain distance, and has units of joules (J = N•m = kg• 

m2/s2). 

• Power is an impulse of energy, with units of watts (W = J/s = N•m/s). 

• Inertia is the change in force required to make a unit change in acceleration. It has 

units of change in force per change in acceleration, or N/(m/s2). 

• Moment of inertia is the analog of inertia for rotational objects. It is the change in 

torque required to make a unit change in angular acceleration. It has units of change 

in torque per change in angular acceleration, or Nּm/(rad/s2) = kg•m2. 

Note: (rad) is considered unitless 

Energy Equations 

Potential energy … 

 … for a mass   = mgh 

Kinetic energy … 

 … for a moment of inertia = ½ Jω2 
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Appendix B: Implementation Notes 

 

This appendix contains many details that will be critical during simulation. 

Simulink Notes 

• To start Simulink: First open MATLAB. Then either type simulink in the command 

window, or click on the Simulink button (enlarged below) on the toolbar. 

 

• Setting up Simulink parameters: When running a Simulink simulation, you need to 

set up a few parameters in order to keep conformity with Windows Target. From 

the Simulation menu, select Configuration Parameters, then in the Solver 

Options box, set Type to "Fixed-step" and "ode1: Euler". 

• Changing simulation Start/Stop time: You can also change Start Time and Stop 

Time in the Simulation Parameters box. 

• Nonlinear RWP model: There is a nonlinear RWP model available for simulation. 

To find it, type pend_blks in the MATLAB command window. You will need the 

Reaction Wheel Block Diagram Model (nonlinear model) and the Reaction Wheel 

Animation (animation block). Points to remember: 

o For the Reaction Wheel Block Diagram Model, "Tau1" corresponds to the 

pendulum arm. (That arm is not actuated, but that's where the disturbances 

are applied.) 

o "Tau2" corresponds to the rotor. (That's where the control effort should be 

applied.) 

o Don’t forget to include a Saturation block (to saturate the control effort at 

±10) before "Tau2". 

o The nonlinear model outputs encoder states (𝜙𝑝, 𝜙𝑟), but your controller 

uses delta states (θp instead of θp). 

o You can change the initial conditions of the Reaction Wheel Block Diagram 

Model by double-clicking on the block. You should only have to change the 

first initial condition (pendulum position, where  signifies upwards). 

o To slow down animation speed, go to Simulation » Configuration 

Parameters, and decrease the "Max step size". (This will force Simulink to 

do more calculations, thus slowing down the simulation.) 

 


