Name:
RWP #:
(painted on base o

ECE 486 Final Project:

The Reaction Wheel Pendulum

Fall 2025

ECE 486 i

Contents
I INEOAUCTION ..ttt sttt s b et ettt e b enees 1
1.1 The Reaction Wheel Pendulumcccooeeiiiiiniiiiniiiiieeeeeeee 1
1.2 Derivation of Mathematical Model...........ccccoeiiiiiiiiiiiiiiee e, 1
2 Friction Identification Using the Reaction Wheelc.ccoocvviiviiiiiiiiiiiiiciee e, 6
2.1 Velocity EStIMAtioNccveeiiiiriiiiiieiieeieesie ettt et seneenreens 7
2.2 PIControl for Friction Identification............cecceveererienienenienieiceescee e 10
2.3 Friction Compensation for Velocity Controlcccccveevviiiiiieieieeeeiie e 11
3 System Identificationcoceoieiiriiniiniiiiee e 14
3.1 Checking the Harmonic Frequencycccccevveeciienienciienieeieesie e 14
3.2 Determination of Parameters (DP, BY)........ccccocvevvveviiiciieiiieiecieceeeee e 15
4 Stabilizing the Inverted Reaction Wheel Pendulumccccoovviiiiiniiininnieennn. 17
4.1 Linearization and Controllabilityc.cccocvveeiiieiieiiieiiecieeeece e 17
4.2 Inverted Stabilization Using Two-State Feedbackcccccvvviiiniiniinenne. 17
4.3 Inverted Stabilization Using Three-State Feedbackcccccocveiiriininncnnene. 19
S ODSEIVET DESIZN...ciiiiieiiiiiiieiieiiecit ettt ettt et e e e e taeebeestaeenbeessaesnseennnaenne 21
5.1 Observing Four States TOZethercooevviveiiieeiiiieeceee e 21
5.2 Decoupling and Redesigning the ObSErver...........ccceeeeieiiieniiiiiieniieieeieeiene 23
6 Up and Down Stabilizing Control..........cccccocieviriiiniiniiiiiiieneeieneesece et 25
T SWING-UP CONIOL.....eiiiiiiiiiiie ettt e seree et e e e eaaeeen 27
Appendix A: Useful Physics TREOTYcocviiieiiiiiiieeeiieeciie e e e 28
Conversions (UNits Of MKS)cc.uiiiiiiiiiiecciee et 28
Energy EQUAtIONScooutiiiiiiiiiiiiieicetestee ettt 28
Appendix B: Implementation NOLEScccueeeiiiiriiieeiiieeriie e e 29

STMULIIK NOTES et e e e e e e e e e e e e e e eeeee e aaeeeeereaaanaas 29

1 Introduction

1.1 The Reaction Wheel Pendulum

Figure 1: The Reaction Wheel Pendulum

The Reaction Wheel Pendulum (RWP), shown in Figure 1, is a simple pendulum
with a rotating wheel at the end. The wheel is actuated by a 24-V, permanent magnet DC
motor mounted on the pendulum. This motor can produce a torque on the wheel, causing
the wheel to spin. According to Newton’s third law, there is an equal and opposite reaction
torque on the motor, and hence on the pendulum. This reaction torque can be used to control
the motion of the pendulum. We begin by obtaining the equations of motion for the RWP.
Next, control of only the reaction wheel’s speed is examined. As part of this phase, we
investigate counteracting the effect of friction in the motor by “friction compensation”.
(Comment: A similar identification technique was used in Lab 5 to test frictionless motor.)
Finally control of the complete RWP is considered.

1.2 Derivation of Mathematical Model

The first step in any control system design problem is to develop a mathematical
model of the system to be controlled. Nonlinear models will first be derived using the

PENDULUM

REACTION
WHEEL

Figure 2: Schematic Diagram

ECE 486 - Introduction 2

Lagrangian approach. These models will later be linearized, and the linear models will be
used to design control strategies.

A schematic diagram of the RWP is shown in Figure 2. We have chosen the angles
as in Figure 2 because it is natural to use gravity to line up the pendulum hanging down.
The angle 6, is the angle of the pendulum arm measured counterclockwise from the vertical
when facing the system, and 6, is the wheel angle measured likewise.

The RWP is provided with two optical encoders. One encoder is attached to the
fixed mounting bracket with its shaft attached to the pendulum link. It thus provides a
measure of the relative angle between the pendulum and the fixed base. The other encoder
is attached to the motor fixed at the end of the pendulum. Its shaft is attached to the rotating
reaction wheel and thus provides the relative angle between the pendulum and wheel. Their
values are initialized to zero at the start of every experiment. (Comment: That’s why when
you run your control later in Chapter 4, 6, and 7, make sure the pendulum is initialized at
its resting position with the motor at the bottom.)

Looking at Figure 2, note that 0, is the angle of the reaction wheel measured from
the vertical axis. Therefore 6, = ¢, , 6, = @, + @, where the encoder angles for the

pendulum and rotor are ¢, and ¢,..

bp = by
0, = ¢p + ¢ 1)

We defined 8, in this fashion in order to simplify the kinetic energy equations which now
makes kinetic energy about 6, and 6, independent of each other.

A convenient way to derive equations of motion for electromechanical systems is
the Lagrangian method. The Lagrangian method allows one to deal with scalar energy
functions rather than vector forces and accelerations as in the Newtonian method and is, in
many cases, simpler.

The RWP has two degrees of freedom. We take as generalized coordinates the
angles 0, of the pendulum and 6, of the rotor as shown in Figure 2. We also introduce the
following variables:

mp mass of the pendulum and motor housing/stator

my mass of the rotor

m combined mass of rotor and pendulum

Ip moment of inertia of the pendulum about its center of mass

Jr moment of inertia of the rotor about its center of mass

th distance from pivot to the center of mass of the pendulum

. distance from pivot to the center of mass of the rotor

l distance from pivot to the center of mass of pendulum and rotor
k torque constant of the motor

~.

input current to motor

(Comment: Please pay close attention to the three £’s above, and you can draw a
picture to visualize them if necessary or label them in Figure 2.)

ECE 486 - Introduction 3

We also introduce the quantity

Lagrange’s Equations

The Lagrangian method begins by defining a set of generalized coordinates
q1,92,---,qn, to represent an n-degree-of-freedom system. These generalized
coordinates are typically position coordinates (distances or angles).

Next, compute the kinetic energy K, and the potential energy V in terms of these
generalized coordinates. Typically, potential energy is only a function of the generalized
coordinates, but kinetic energy is a function of the generalized coordinates and their
derivatives.

In a multi-body system, the kinetic and potential energies can be computed for
each body independently and then added together to form the energies of the complete
system. This is an important advantage of the Lagrangian method and works because
energy is a scalar-valued function, as opposed to a vector-valued function.

Once the kinetic and potential energies are determined, the Lagrangian,
L(q1,---»9nG1,---»qn), 1s then defined as the difference between the kinetic and
potential energies. The Lagrangian is therefore a function of the generalized coordinates
and their derivatives.

L=K-V
Finally, it can be shown that the equations of motion all have the form
d (0L oL
E(a—q_k)—a—qk—‘l;k k=1,...,n (2)

The variable t; represents the generalized force (or torque) in the gx direction.
These equations are called Lagrange’s Equations and have the remarkable property of
remaining invariant with respect to arbitrary changes of coordinates.

J=Jp+ mpls + m L7 2)
to represent the moment of inertia with respect to 6,, and note the relationships

m=mptm, A3)

mt = mply + md, . 4)

(Comment: J is the total inertia when considering a non rotating rotor attached to the end
of the pendulum as an object. You treat rotor plus pendulum as an overall structure.)

ECE 486 - Introduction

1-a

Write down the equations for the kinetic energy K and potential energy
Vof the RWP. The kinetic energy of the system is the sum of the kinetic
energies of each degree of freedom. How many degrees of freedom
does the RWP have? (Re-read section 1.2 above and see Appendix A
for help with the physics if you’re stuck. If you would like more details,
check out Wikipedia on Lagrangian Mechanics.)

Derive kinetic energy and potential energy with respect to the generalized
coordinates 6, and 6,.

KEq, =

PEqg, =

KEq, =

PEg. = 0

1-b Write Lagrange’s equations (Equation (2)) for this system to show that

the equations of motion for the reaction wheel pendulum are given by
Equation (6) below. Here ¢, =6, 4; = 6,,q, = 6,, 4, = 6,. The
torque produced by the motor results in a torque t acting on the rotor
and —t acting on the pendulum. Use the relation 7 = ki for motor
torque.

Express the equations using three parameters: wnpz = ng{, % and]E
(Notice that w,,, is the frequency of small oscillations of the system
around the hanging position.)

K = KErotar =
V = PErotar =
L=K-V =

Equations of Motion =

ECE 486 - Introduction 5

Your final representation should be:

6, + wnp?sin, = —%i

; e (5)
T - El
So far we have ignored friction. The mass on the pendulum is large enough that the
friction on the pendulum link can be ignored. However, there is a significant amount of
friction on the rotor link (mostly due to motor friction). Fortunately, the rotor is attached
directly to the motor, allowing us to compensate for friction. The motor current i is
generated by a pulse width modulation system, which is controlled from the computer. Due
to current feedback, the current is proportional to the control command u from the
computer. The control variable used in the computer is scaled so that 10 units correspond

to maximum current. Therefore we can write

ki = kyu, |u] <10. (6)
We assume the friction is a function of the rotor speed F(w,). We will model friction
in command units (units of 'u'). Applying Equation (6),
o . ky .
0, + wy® sin 6, = - (u+ F(6,))

; ol e)
X = “u+F@)

. : . ?
Finally, to clear up the clutter, we can also introduce variables a = wnpz = %,

b, = k]—u, and using (7), b, = I;—” becomes:

{ 6, + asin@, = —b,(u+ F(6,))
6, = b (utF(6)

This is a satisfactory representation of the RWP. Before we begin its control,
however, let us take a detour and consider speed control of a DC motor. This will allow us
to model and compensate for friction.

(8)

2 Friction Identification Using the Reaction
Wheel

In this section we will identify the friction of the RWP’s DC motor. Recall that we
made the assumption that the pendulum link has negligible friction. To help collect data
for finding the friction coeficients, we will design a velocity control for the motor. Since
velocity information is not directly available to us, we will use an approximation of the
motor’s velocity.

Safety note: When doing experiments in this part, remember a couple of things.
Even though the motor controller has a safety mechanism to prevent the motor from
spinning extremely fast, the combination of spinning fast and running for a long time will
heat up or even burn out the motor. Be prepared to shut off the controller either when the
system runs long enough for you to collect data or when it becomes unstable, either through
the Simulink model or the switch on the amplifier board. Consider 200 rad/s as fast.

In past labs we have analyzed the dynamics of a DC motor, using the armature
voltage as the input. Here however, we select the armature current i as input. Then the
motor becomes merely a current-torque transducer (see Figure 3), meaning electrical

i—» MOTOR —» r=ki

Figure 3: DC Motor Model

energy will be converted to mechanical energy.

The torque 7 is applied to the reaction wheel (rotor) having moment of inertia J- and
speed (relative to the motor housing) of w,. There is also friction, due mainly to the motor
brushes and represented as a torque 7. So the motion of the wheel is given by

Jrwr = ki—1p 9)

using the motor (rotor) speed w, = 6, as the output. Putting it in terms we are familiar
with, we get the following: (Comment: The Tin Equation (10) is “positive” while the
F(6,) in Equation (11) is “negative”.)

@y = 6, = b, (u+F(6,)) (10)

ECE 486 - Friction Identification Using the Reaction Wheel 7

K b, /s
OREF UgL

»9—» CONTROLLER |—» MODEL » velocity (o)

Figure 4: General Block Diagram of Velocity Controller. We assume friction
is 0 here.

2-a Using Figure 4 as a guide, design a proportional controller with a rise
time of 0.2s and no steady state error. Use an input step of 100 rad/s.
Assume b, = 198 (rad/s). Simulate your controller using Simulink.

2.1 Velocity Estimation

Consider Equation @, = 6, = b,(u + F(6,)) (10) and again ignore friction
for now. Of course, this is an ideal model, so a few real-world issues must be dealt with.

Recall from Section 1.2, page 5, that the control input is limited to 10. That is simple
enough to simulate in Simulink. (Hint: Check out the “Saturation” block.)

Another issue is the determination of angle from the encoder output. Think of the
encoder as the Wheel of Fortune wheel; counting ticks tells you that it’s turning. (There’s
also a provision for determining direction of spin; this is analogous to the “ticker” sounding
different in either direction.) The ticks add as the angle changes. There are two issues here:

First, how does the software know where “zero” is? By convention, zero is the
encoder angle when you “Start” the run.

Second, how do you determine angle from ticks? Since the motor encoder has 4000
ticks/revolution, multiply by 21/4000 to scale to radians. (The pendulum encoder has 5000
ticks/revolution.) One other detail: the reaction wheel encoder and motor use opposite sign
conventions in this setup. In other words, when a positive current is applied to the motor,
it spins in a direction that the encoder calls negative. Therefore, you will need a -1 gain
before the input to the motor.

The encoder measures position. How can the velocity w = d6/dtbe obtained? This
is done either by using a transfer function that approximates a derivative or by using a
discrete version of the same. We will implement both and compare them.

A simple discrete version can be found by using Euler’s method (FPE pp.167, or
FPE 3" Ed pp. 138). It states that

af _ . f(O-f(t-4D)
a = M a (1
The discrete derivative approximation is implemented by using the “Unit Delay”
block in Simulink. Even though this is a discrete approximation of the velocity, we will

consider this velocity continuous for simplicity. Applying Equation (11) to our system,

ECE 486 - Friction Identification Using the Reaction Wheel 8

0,-(t)—0,(t—At
() = SO0t 12)

Note: We will be using a sample period At of 0.002s.

The continuous derivative approximation can be understood by looking at the
frequency response of the derivative function s. We want to keep the response similar at
low frequencies, but refrain from amplifying the high-frequency noise. This is
accomplished by placing a pole at a sufficiently high' frequency, giving the transfer
function

S

Ts+1’

(13)

where 1/7 is the pole location.
For your continuous derivative, use Equation (13) with 7= 1/50. Now that we have
a velocity estimate, we can solve the following problem:

! Sufficiently high: application-specific, often selected iteratively by simulation or test runs.

ECE 486 - Friction Identification Using the Reaction Wheel

2-b

Implement your velocity approximations, and the controller designed
above, in Simulink with the C2000 Microcontroller Blockset toolbox.
A starter Simulink file is provided for you called part2b_starter.six.
Procedure for copying and opening the starter file:

1. Create a folder named after your NetID inside C:\matlab\ece486\.
For example, if your NetID is jdoe2, create C:\matlab\me340\jdoe2
2. Copy the folder N:\labs\ECE486\final_project\part2 into
C:\matlab\ece486\<yourNetID>.

3. Start Matlab

4. Change the current working directory to
C:\matlab\ece486\<yourNetID>\final_project\part2 using the Matlab
command window: © ?

5. Open the Simulink model by double-clicking on it in the MATLAB
Current Folder browser.

Procedure to check feedback positive direction:

1. Before you can implement your controller, you need to scale the
Reaction Wheel C2000 Block’s optical encoder outputs ¢,, and ¢, to
radians and add the -1 gain block before the motor input. Using the
scale factors given above, use two gain blocks to scale ¢, and ¢,to
radians and one more gain block to add a -1 before the motor input.
2. Use a Sum block to form 6,..

3. Use Scope blocks to plot the values of 6,, and 0,..

4. Run this Simulink file (Monitor and Tune) with the motor off and
when time start progressing look at the scope plots 8,, and 6,..

5. Gently move the pendulum and motor to check if their positive
directions are the same as Figure 2. If not add a negative in the gain
block to correct the direction. You will not be using 6,, or 6, in this
section 2, but you now have its positive direction verified for the
remaining sections.

Implement P Controller:

1. Now implement the two velocity approximations and your
controller, designed 2-a, using ¢,.as the feedback signal. Here we
are assuming the pendulum angle 6,is not moving. You can gently
hold the pendulum when the controller starts moving the motor. Use
a Simulink “Manual Switch” to allow your Simulink implementation to
switch between using as feedback the two velocity approximations.
Make sure to plot velocity so you can compare the two
approximations.

2. Compare the simulated response in 2-a with the C2000
Microcontroller Blockset response in 2-b. What is the source of this
discrepancy?

ECE 486 - Friction Identification Using the Reaction Wheel 10

The answer to item 2 leads us to the ultimate goal of this section: friction
identification and compensation.

2.2 Pl Control for Friction Identification

As you know, we can counteract a constant disturbance by adding an integrator.

2-c Add an integral term to your 2-b P control implementation to create a
PI1 controller that regulates the motor to 100 rad/s. To help you with
this, there is another starterfile, part2c_starter.slx (already copied to
your part2 folder) that shows you how to reset the integrator when
the Motor Enable button is pressed, or the manual switch is flipped.
So you will be copying your P control implementation from 2-b into
this part2c starter file to create your PI controller. Start with Kp equal
to your 2-b value and Ki equals to this same Kp value. Hand tune Kp
and Ki until you have a response with 0.2 second rise time, less than
5% overshoot and zero steady state error. In addition to scoping the
speed of the motor, use a Display block to display the control effort
applied to the motor.

Because the motor has damping and static friction, the control effort to hold the
motor at a desired speed is nonzero. Using this fact we can command the motor to one
velocity at a time and record the control effort needed to regulate the motor at that speed.
This control effort is the amount of effort the motor needs to overcome friction.

Saying it another way, consider Equation &, = 8, = b, (u + F(6,)) (10) at
steady-state, with friction included. Remember F(6,.) is negative.
@& =0, =b.(u+F(6,;)=0 (14)

We see that for non-zero friction, the control effort will be non-zero as well. In fact,
the value of friction for any velocity is merely the steady-state control effort for a setpoint
of that velocity. In other words,

u=-F(,) (15)

2-d Run the motor at various speeds (i.e. vary the setpoint of the PI
controller to 150, 100, 75, 50 and 25 radians/second) and record the
steady-state control effort for each speed. Do this for both positive
(counter-clockwise) and negative (clockwise) velocities. Fit this to two
lines (hint: see MATLAB command “polyfit’), and note the static, ¢, and
dynamic, b, frictions in both directions (they will probably differ).
Write down the expression for F(6,).

ECE 486 - Friction Identification Using the Reaction Wheel 11

Now that we have characterized friction, we can explore a way of negating its
effects on our system.

2.3 Friction Compensation for Velocity Control

Friction affects all systems, and can add to or modify system dynamics, bring in
noise, decrease resolution, and introduce offsets. We have implemented one method of
dealing with offsets introduced by Coulomb friction — integral control. However, the
dynamics of the system are still affected by friction. By considering friction as a linear
function (a velocity gain and offset for each direction), we see another way of dealing with
it. Since we now know the value of friction (in control units; see Equation (6) and the
associated discussion on page 5) for any speed, we can let Simulink “adjust” for friction
by counteracting its value as a function of speed (see Figure 5).

ECE 486 - Friction Identification Using the Reaction Wheel

2-e

Implement friction compensation.
Start with the Pl control you developed in 2-c.

Typing “fricblocks” at the Matlab prompt opens the block that you
used in Lab 5 to calculate asymmetrical friction. Enter the c+, b+, c-,
b- values you found in 2-d.

Design your Simulink model using two more manual switches so that
you can switch off your Pl control and just apply a constant zero, and
also a switch that switches on or applies zero for the friction
compensation part. (Looking back at the Lab 5 friction compensation
Simulink implementation may help you with the placement of these
manual switches.)

Start out with your Pl control switched off and simply implement
friction compensation. What do you expect will happen? Reason out
what you expect to see, then gently hold the motor and manually spin
the motor in either direction and see what happens.

Tune your friction b and ¢ values in both directions in order that when
you manually spin the motor it keeps on spinning in the same
direction for at least 20 seconds. Most of the time you will only need
to adjust b+ and b-. If your motor does not move when first enabled
your ¢+ and c- are more than likely good values. Use these tuned
b+, ¢+, b-, c- values as your friction values.

Now switch on just your P controller by zeroing the Ki gain. A
proportional control should now regulate the system to (or very close
to) the desired velocity. Is integral control still needed, or is
proportional control sufficient? Answer this question by setting Ki
back to the value you tuned in 2-c. Observe the effects of Pl control
with friction compensation as you use your finger to add a very small
additional damping by letting the flywheel rub against your finger as it
spins.

12

ECE 486 - Friction Identification Using the Reaction Wheel 13

FRICTION
COMPENSATION |«
F' = botc
PLANT PLANT
FRICTION- FRICTION-
u CL——P@—V LESS » velocity (o) Ugp +@—> LESS » velocity (o)
7y MOTOR - MOTOR
FRICTION FRICTION
F =-(bwtc) | F = -(bor+c)

OPEN-LOOP SYSTEM SHOWING FRICTION EXPLICITLY OPEN-LOOP SYSTEM WITH FRICTION COMPENSATION

Figure 5: Functionality of Friction Compensation

Reaction Wheel

N
’erification, then

Pendulun
finally delve into control.

We can now determine the parameters of the Reaction Wheel Pendulum (RWP).
Here we set up the RWP in the standard configuration. The parameters can be determined
from physical construction data and by direct experiments on the system. It is useful to
combine both methods to find all the parameters, and to make cross-checks. It also verifies

3 System ldentification

that our mathematical model is reasonable.

By measuring the dimensions of the components, weighing them, and computing

moments of inertia using simplified formulas we find:

mp =0.2164 kg For you to find:
my =0.0850 kg J = kgm?
_ 4 2 m - kg
Jp =2.23310" kgm / _ m
Jr =2.49510" kgm? Oy = rad/s
¢, =0.1173 o' = rad/s
P m measured frequency of oscillation:
- =0.1270 m Onp'meas= rad/s
3-a Use the relations and definitions given in Section 1.2 to get values for

J, m, £, and wy,. Also find w,,". (Defined by Equation (16) below)

In order to verify the natural frequency, we can do a free swing test (below).

3.1 Checking the Harmonic Frequency

3-b Use the provided part3.six file, do not flip on the motor amplifier for this
run, and start the Simulink file with the Pendulum hanging in the down
position. Once the Scope plot for 8, and the Scope for ¢, start
plotting, move the pendulum to approximately 90° and let it swing
freely. When the wheel stays stuck to the pendulum, i.e. the encoder
reading ¢, is constant, determine the frequency of oscillation
(wnp 'meas)-

Procedure:

1. Create a folder named after your NetID inside C:\matlab\ece486\ if
you haven'’t done so already. For example, if your NetID is jdoe2,
create C:\matlab\me340\jdoe2

2. Copy the folder N:\labs\ECE486\final_project\part3 into
C:\matlab\ece486\<yourNetID>.

3. Start Matlab

4. Change the current working directory to
C:\matlab\ece486\<yourNetID>\final_project\part3 using the Matlab
command window: “ ?

ECE 486 - System Identification 15

5. Open the Simulink model by double-clicking on it in the MATLAB
Current Folder browser.

This measured frequency is different from w, because the rotor is contributing to
the moment of inertia. The quantity you measured is actually

, 4
ony'= [P (16)

Compare the experimental value with the theoretical value, computed from the
parameters (all known).

Notice how w,, and w,," are very close in value. For that reason, we can use w;’
as our identitied value for w.

Notice also that the decay in the swing amplitude is slow. On the other hand, if the
rotor is excited with the maximum current, and then the current is removed, it takes only a
few seconds to come to complete rest. In both cases, friction is the only deceleration force
(for the pendulum, consider conservation of energy and for the rotor, apply Newton’s first
law of motion). This helps to validate our assumption that the friction in the pendulum link
is negligible, but friction in the motor is not.

3.2 Determination of Parameters (b, b,)

There are two parameters that we still don’t know. These are b, and b,. By
examining Equation (17), we see a way to find b, and b,.

{ 6, + asin@, = —b,(u+ F(6,))
6, = b.(u+F(6,))

Our sensors directly measure 6,,0,. We developed an approximation for ¢, in

(17)

section 2.1 and you can use the same velocity approximation for ép and 0,. If we estimate
épand 6,by differentiating again and use our friction model from section 2.3 to replace
F(6,), the only unknowns in the top equation of (17) are b, and b,. Solving for them is
trivial, assuming we can find the second derivative. Alas, Figure 6 shows that the first
derivative is noisy, and the second derivative is worthless. A better approach would find a
polynomial fit for 6,,0,, and differentiate this fit to get clean values for ép,ér,épand 6,.

These clean values can then be put into Equation (17) to solve for the torque constants. In
practice, a cubic fit of the RWP response to a step input from rest gives good results.

ECE 486 - System Identification 16

002+ Original data .
Cubic Fit
-0.04 | .
-0.06 | .
1 1 1 1
0 0.05 0.1 0.15 02 0.25

——— Discrete data derivative
———- Continuous data derivative
ore] S AR O D Cubic Fit derivative

0 0.05 0.1 0.15 02 025

Figure 6: Derivative approximations add significant noise

3-c Use the method described above to find b, and b.. The given Simuink
file, part3.slx, collects the needed data in the scope labeled “Theta_p,
Theta_r, & control effort”. Each time before running the Simulink file,
bring the pendulum up to about 90° and let it swing freely until stop.
This lets the pendulum find its own zero position and usually results in
a better place to start the system for the identification run. Now run
(Monitor and Tune) the Simulink file. When the realtime code has been
loaded and running, time “t=" will start increasing in the bottom right
corner of your Simulink model. At this point flip the motor amp switch
on and then click the “Enable PWM / Disable PWM?” button in Simulink
model. A step input will be given to the motor when this Simulink button
is clicked. A partial m-file is provided for you on the lab website that
will help you use this collected data to find b, and b, The given
Simulink file uses a step of magnitude 5 for u.

Another way to determine b, and b, (and thus %,), uses equation (6). The i is
determined for the maximum input u of 10. Properties of the motor and controller tell us
the value of imax and £, giving

b,=1.08
b, =198

Your results should approximately agree (within 30%). For the remainder of this
lab, use your identified values for w,,, b, and b,.

17

4 Stabilizing the Inverted
Reaction Wheel Pendulum

4.1 Linearization and Controllability

The Reaction Wheel Pendulum (RWP) has equations of motion, ignoring friction,
given by
{ 6, +asinb, = —byu

18
0, = b (1%)

4-a Linearize this system about the equilibrium position of 8, = m. Write
the state-space model for this system in the blanks provided in
Equation (19) and check for controllability from the single input u. What
are the system’s open-loop poles (or eigenvalues). Note: Your new
state variables are delta-angles, where §6,,= 6, — mand §6,.= 6, — 0.

A Xx + Bu

X =

[69,0]

ép

= + u 19

l ‘ 56, (19)
0,

The system should be controllable; otherwise we would need to add another

actuator to be able to complete the project.

4.2 Inverted Stabilization Using Two-State Feedback

When designing a State Feedback controller (u = —kx) we usually talk about
placing the poles of the closed loop system. These poles need to be stable and responsive
enough to make the system respond in a desired fashion. But where to place the poles,
especially when you are first working with a new system, is a good question. For the
reaction wheel pendulum we only care about the pendulum stabilizing in its upright
position. The angle of the motor does not matter. (We will find soon that the velocity of
the motor is important though.) So at first let’s just design a 2 state feedback controller
that only uses the pendulum’s feedback. This way the linearized closed loop system will
be 2" order and you can use your knowledge of the ideal second order system’s
characteristic equation s + 2{ws + w? to choose two poles. Here we are only considering
the top left 2X2 portion of your linearized A matrix and the first two entries of the B matrix,
therefore a 2" order system.

ECE 486 - Stabilizing the Inverted Reaction Wheel Pendulum

4-b

Design a 2 state-feedback controller for the RWP using the MATLAB
command place. Choose poles by trial and error by finding the roots
of s? + 2{ws + w? given the constraints:

1. w > wy, so the closed loop dynamics are faster than the open-
loop dynamics.

2.7 < 1/V2.

3. Keep both K values less than 400.

Simulate your system starting with part4simulation_starter.sIx which
has the nonlinear “Reaction Wheel Block Diagram Model” (See
Appendix B) and “Reaction Wheel Animation” blocks. For this
simulation don’t bother estimating velocity; just use the exact states
from the model block. Also note that your control effort should
connect to the given Saturation Block so that control effort is
saturated to the maximum motor input -10 to 10.

Simulate @ Initial Condition (IC) deviation (66, or 59,, nonzero),

@ a pulse (simulating a tap) disturbance input to the pendulum arm
(7o) with duty cycle of 5% and period of 4 seconds,

® a constant disturbance input to the pendulum arm.

Is the response satisfactory (i.e. stable and fairly fast)? Now look at
rotor velocity. Do you see any problems?

Procedure:

1. Create a folder named after your NetID inside C:\matlab\ece486\ if
you haven'’t done so already. For example, if your NetID is jdoe2,
create C:\matlab\me340\jdoe2

2. Copy the folder N:\labs\ECE486\final_project\part4 into
C:\matlab\ece486\<yourNetID>. This will copy all the files you need
for part 4.

3. Start Matlab

4. Change the current working directory to
C:\matlab\ece486\<yourNetID>\final_project\part4 using the Matlab
command window: “cd C:\matlab\ece486\<yourNetlD>\part4”

5. Open the Simulink model by double-clicking on it in the MATLAB
Current Folder browser.

Note: Remember that the controller uses delta states, whereas the nonlinear model

outputs absolute states.

Comment: In order to fill out the first row in the below table, you need to test IC
deviations for both §6,, and § Q'p But you only test one at a time, i.e., for example, when
you test IC deviation, add small deviation to §8, but keep zero deviation for § ép. Then

you test & Op similarly.

18

ECE 486 - Stabilizing the Inverted Reaction Wheel Pendulum 19

Table 1: Robustness Comparisons

Two-State Feedback Three-State Feedback Observer

4.2) (%)) (5.1)
@ Max IC deviations 50, 56, 56, 56, 56, | 80,
@ Max pulse
3 Max constant
disturbance

As you can see, the rotor velocity stays constant at steady-state without any
disturbances. However, with a constant disturbance, however small, the motor undergoes
a constant acceleration to counteract it, which causes the velocity to increase without
bound. Since we have a bound on velocity (there is a/lways a bound on velocity!), this is
not practical for implementation. Therefore we must feedback the rotor velocity
information.

This may raise a question: In simulation, if a constant u can cause velocity to
become arbitrarily large, why can’t that happen in our system? Because as velocity
increases, friction increases, and (u-F) decreases until friction effectively “cancels out™ u!

4.3 Inverted Stabilization Using Three-State Feedback

Consider the eigenvalues of the 4-state state-space model you found in Question 4-
a. The zero eigenvalues represent the rotor position and velocity. Our goal is to pull the
velocity eigenvalue into the LHP, but leave the position eigenvalue alone. This will
stabilize the rotor velocity, while still ignoring its position.

4-c Using the same constraints as 4-b, design a 3-state feedback
controller with 6,,, 6,,, and 6, = ¢_+ ¢, as the feedback and simulate

in Simulink. Again for this simulation do not estimate the velocity,
just use the exact states from the model block.? Place the 6,
eigenvalue between the other two LHP poles. (Hint: Use MATLAB
“place” — just keep the fourth pole at zero. This makes the fact that
we’re ignoring 6, evident.) Simulate conditions ©, @, and ® from 4-b
again. Record in Note: Remember that the controller uses delta
states, whereas the nonlinear model outputs absolute states.

Comment: In order to fill out the first row in the below table, you need to test IC
deviations for both §6,, and & ép But you only test one at a time, i.e., for example, when

2 We're not asking you to estimate the velocity in the simulation because we want to start the
pendulum around = radians. This requires you to input the correct initial value into the velocity estimate
transfer functions by subtracting 6,,’s initial condition from 6,, and 8,., which would make your Simulink
diagram more complicated and harder to manage.

ECE 486 - Stabilizing the Inverted Reaction Wheel Pendulum

20

you test IC deviation, add small deviation to §6,, but keep zero deviation for § 9p. Then
you test & 9,, similarly.

4-d

Table 1 the maximum IC deviation that the system can correct, as well as

the maximum tap.

Using the starter file part4_implement_starter.xls implement this
controller on the actual RWP. Here you will have to estimate velocity
using the method you chose in 2-b. If the RWP is too sensitive to
stay balanced, check the rotor velocity. If the RWP is spinning up to a
high velocity before falling, then your 6, feedback gain may be too
small. Adjust the 6, gain until you get a satisfactory response, then
show it to your TA. When the RWP is successfully stabilized, you
should see limit cycle behavior® .

Add to your 4-c implementation friction compensation (which you
designed in Question 2-e) and observe the change in behavior.

u= —kx*x+ friction_compensation

Demonstrate it to your TA.

We will next explore the observer’s approach.

3 Persistent (but not necessarily precisely) repeating behavior that does not die out is called Limit

Cycle Behavior.

21

5 Observer Design

We will now design an observer for the Reaction Wheel Pendulum (RWP) to
estimate the states of the full state feedback controller we designed previously. The
observer will estimate both velocities of the system. And since we’re designing a full-order
observer, it will also “estimate” both positions.

Look back at your full-state feedback design; you pulled all of the open-loop poles
except the 8, pole into the left half plane. When we design an observer, however, we must
place all of the observer poles in the left half plane; our criteria being: “significantly
farther” than the desired closed-loop poles. See Figure 7 for an illustration of this (not to
scale, and relative pole locations may vary by design).

A A N
// />‘\ \\ ///,,.r/,,,riﬂ p— B //,‘ ;\\\\

/ / //) ~ Y /. / /// i ™ N / / /// 1 \ \
“«— X \\‘ } \ > £ —\,—% i [\\ \; \ >
| \ \\ //’/ ///’ } ‘ﬁ// g . / / \ \\ A o / / /

\ \\\ s y ! O /// / \\\ N - S

\ S N — .
\\ ~ /,/ N . ; /// \\ /’/ s
v v v
OPEN-LOOP POLES CLOSED-LOOP POLES OBSERVER POLES

Figure 7: Illustration of Pole Locations

5.1 Observing Four States Together

> 56
] RWP ¢ o coordinate P
change
» 350
[0} r
r
u observed ‘J
- K | Observer
states

Figure 8: Block Diagram of System with Observer

Figure 8 shows the structure of our closed-loop system with observer-based control.
In Simulink, the observer block can be modeled as a State-Space block. However, in order
to do so, we need to define the A, B, C, and D matrices (where the state equation is defined
as {x =Ax+ Bu,y = Cx + Du }).

The standard differential equation for an observer is

AX +Bu+L(y—%)

X

ECE 486 - Observer Design 22

9 = CZ + Du (20)

Keeping in mind that we want X as the states, X as the outputs, and both delta-angles
(collectively called y, wherey = [, , 59-]") as well as u as the input, Equation (20) can
be manipulated to give

{5’2 = (A-LO)Z+ B L] [z] on

Z=I45C\

where z represents the output of the observer. You should be comfortable going
from Equation (20) to Equation (21). (Hint: when doing matrix algebra, always check
dimensions!)

In particular, what is C? From Equation (20), we see that y and ¥ must have the
same dimension, and, in order for their difference to be meaningful, must represent the
same physical phenomena (e.g., subtracting a velocity from an angle is meaningless).

sincey = CXx, C= { } (fill in your C matrix)

Also, why 147 (I4represents the 4 x 4 identity matrix) Because we want to output
all of our states individually. If we used a scalar z and defined z = X¥; + X, + X5 + X,
then instead of having more information from the observer, we would actually have less!

5-a Using the MATLAB place command to find a L matrix that places the
observer poles significantly farther than your closed-loop poles (as
designed in Section 4.3). Five to ten times faster is a good distance.
Keep these poles near or on the real axis. Also note that the ‘place’
command cannot solve for repeated roots. Check the observer's
eigenvalues, eig(A-L*C) using MATLAB eig to double check you placed
the poles correctly.

5-b Simulate your observer design in Simulink. You can start with your 3-
state simulation you made in part 4. Test and record the same things
you tested in Question 4-b. How does this controller compare to the
three-state feedback controller? Now vary the nonlinear model’s
parameters slightly. Does the controller still work?

The extremely high sensitivity of this controller to variations in the plant may
surprise you, but in the next section we will explore the RWP model in more depth in order
to understand why this is the case, and find a way to modify your controller in order to
make it less sensitive to plant variations.

ECE 486 - Observer Design 23

5.2 Decoupling and Redesigning the Observer

Recall that the state-space model for our system has the form

01 0 0 0

. la 0 0 0 —b,

x—0001x+0u (22)
0 0 0 O b,

We see that A has a specific form — the top right four values and the bottom left
four values are zero. There is a special term for that form — block diagonal. Let us take a
small digression and explore the implications of A being in block diagonal form. If we
rewrite the system as

X, 2] [M 0 x1,2] [P]
N + u 23
|:.X3'4 0 NllX34 Q ()
where the “elements” of these vectors and matrices are now vectors and matrices
themselves, this representation of A makes A look like a diagonal matrix. Separating the
two vector equations, we get

561 2 = Mx1 2 + Pu
{- ' ’ (24)
X3,4 = NX3_4 + Qu
And then writing each vector equation as a system,

. 0 1 0
X12 = [a 0] X1t [—b]u, Ciz=|]
P
0 1 0 (25)
X34 = [O 0] X34 T+ [br] u, Css=1[]

This is quite significant. It says that the dynamics of these subsystems are
decoupled, or independent of each other. This is a direct result of A being in block diagonal
form. (Note that this does nof mean that you can control the dynamics of both arbitrarily —
the same input u applies to both.) Another implication is that the eigenvalues of A are the
union of the eigenvalues of M and the eigenvalues of N.

This last fact can be used to our advantage. We wish to make the observer response
converge very quickly, and therefore want to set the eigenvalues of (A-LC) to be fast.
Remember that we’re now designing the internal dynamics of the observer; the input u is
not applied here. Here is the breakdown of (A-LC) designed in 5-a and 5-b:

lll 112 _lll 1 _l12 0

_ 1 0 0 O _ 121 122 . . a—121 0 _122 0
C N [O 0 1 O] ’ L - 131 132 ’ (A LC) o _l31 0 _l32 1 (

l4-1 l4-2 _l4-1 0 _l4—2 0

26)

So the first and third columns can be modified. Must the values that are not on the
block diagonal be nonzero? For example, look at /. It determines the effect of X5 on ;.
But since the dynamics of the first two states are decoupled from the last two, that term is
unnecessary. In other words, we can arbitrarily determine the dynamics of the observer

ECE 486 - Observer Design

using only /77, I21, [32, and I42! In fact, the other terms only serve to make the observer more

sensitive to model errors and noise.

If the dynamics are independent, then why did MATLAB give nonzero off-diagonal

terms? Answer: the algorithms MATLAB uses do not check for independence.

5-c

Split up the system as shown in Equation (25), and use MATLAB to find
the 2 small L matrices. Then combine the two L matrices put their
values in the /14, 21, Is2, and 42 positions. Compare this new L matrix
with the L matrix found in Question 5-a. Now take the L matrix found
in Question 5-a and zero out the terms off the block diagonal. Compare
again. Is it important to split up and redesign, or do you find it sufficient
just to zero out the terms off the block diagonal? (Hint: Look at their
effects on the observer eigenvalues.) Repeat Question 5-b with the
new L matrix. Any improvement?

Now we have a good design, and are ready to put it to work on the actual RWP.

5-d

Copy and rename the Simulink file you developed in 4-c, 4-d to
implement your 3-state feedback controller. Give it a name with “part5”
in the name. Then use this file as a starter to implement your observer
design on the RWP. How does this controller compare to three-state
feedback control? In most systems if you have a direct measurement
of a state like we do with the optical encoders, the direct velocity
measurement is more robust than using the linearized approximate
model in an Observer.

25

6 Up and Down Stabilizing Control

We will now explore the topic of switching control. We will first discuss this topic,
and then consider the example of the RWP, which we are quite familiar with. We can then
design a switching controller for the RWP without much trouble.

Most systems that we control are nonlinear. We simply choose an operating
condition and linearize about that condition. However, what if we want to control this
system over a broader range of operating conditions? For example, airplanes are extremely
nonlinear systems. Fighter jets are even more so, due to the enormous range of airspeeds
and maneuverability requirements. A nonlinear controller would be extremely complicated
and may even become unstable near the extremes, due to modeling errors. The approach
used is to switch between many different linear controllers based on the states. Each
controller uses a different model for the system, and applies a different type of controller,
but all share the broad goal of keeping the jet in the sky*. The difficult aspect of switching
control is handling the switching transients: When switching from one model and controller
to a completely different one, how do you guarantee that the system won’t go unstable?

To explore this further, let us consider again the RWP. Unlike a fighter jet, a
pendulum has only two equilibrium points: up and down. We have designed a controller to
balance up. If we make a switching control to balance down when the pendulum swings
past the upward stabilizable region, will we be able to guarantee stability? Keeping in mind
that the downward equilibrium is a stable equilibrium, it is not rocket science to determine
that after the switching transients, the down controller will be able to stabilize the
pendulum.

"down" controller

thet
N T ERNIY

l—

Fen block Switch

l

"up" controller

Figure 9: Implementing Switching
Control

6-a Design a switching controller that will stabilize the RWP in either the
up or down position based on the pendulum angle &,. To make your
life easier, use three-state feedback controllers as in Section 4.3.
(Hint: use the “Switch” block controlled by a function of §—see figure
above.) First simulate it, then implement it on the RWP.

4 Controlling a nonlinear plant by switching between a family of linear controllers, each tuned for
certain operating conditions, is called gain scheduling

ECE 486 - Up and Down Stabilizing Control 26

If you don’t see the effects of the controller in the down position, swing the
pendulum freely and see how long it takes for the swinging to stop. There should be a
significant decrease in that time with your new controller.

27

7 Swing-Up Control

After all that talk of avoiding nonlinear control by using switching control, let us
now look at nonlinear control itself. It can be a very useful tool, especially when it is used
along with other control algorithms. We can use switching control to switch between a
nonlinear controller and a linear controller. This may sound complicated, but actually
“switching control” is nothing more than an algorithm that switches between multiple
controllers. We can use a nonlinear controller to get the system into the region that is
stabilizable with linear control, and then switch over to the linear controller. That is the
approach we will use to swing-up the pendulum and then stabilize it at the top position.

The concept of nonlinear control may sound daunting, but look at the problem in
this way: how can we pump energy into this system properly, and how can we get the
system to recognize that it is in the “region” of stabilizability? A clue lies inside that
question: energy. We can measure kinetic and potential energy, we want a certain setting
of kinetic and potential energy, and we can apply kinetic energy.

Let us look at this from a naive point of view. Assume that we want to tap the
pendulum really hard at the bottom, but just hard enough to get it to swing up and come to
rest (briefly, of course) at the top. (Do not try this! The RWP is fragile.) You can imagine
tapping it harder or softer based on how high up it swings. Is there a way to figure out just
how hard you need to tap it? Yes! The energy at the bottom is purely kinetic, and you want
the energy at the top to be purely potential. Therefore, you can compute how intensely you
must tap.

\ — oA
A N

u>0 u<o0 u>0 u<o0

&

ak

c
A
o

Figure 10: Ilustration of Nonlinear Swingup Control.
Light grey is the starting position, black is the final position after applying u.

On the actual RWP, you have the added advantage that the motor is mounted on
the pendulum, so you do not need to tap. Rather, you can apply a long-term force (see
Figure 10). But there is a disadvantage to this: the force is limited by the maximum velocity
of the rotor (as we have seen before). It turns out that the motor cannot provide the
necessary energy input in a single swing. Therefore, the motor must dump some energy
during one swing, then dump energy in the other direction during swingback, and so on
until the RWP has the correct amount of energy. Figure 10 shows a plot of the intersection
pendulum energy and the ideal energy when the pendulum is balanced in an inverted
position

There is, of course, the added complication of friction. To account for this, we can
simply dump in more energy than required without friction and hope it works. This process
takes much trial and error.

This is only one of many methods of doing swing-up control. There are many
implementation details involved in making a swing-up controller. Have fun!

28

Appendix A: Useful Physics Theory

Conversions (units of MKS)

e Length (m), Mass (kg), and Time (s) are basic units.

e Force is mass * acceleration, and has units of newtons (N = kgem/s?).

e Energy is force applied over a certain distance, and has units of joules (J = Nem = kge
m?/s?).

e Power is an impulse of energy, with units of watts (W = J/s = Nem/s).

e Inertia is the change in force required to make a unit change in acceleration. It has
units of change in force per change in acceleration, or N/(m/s?).

e Moment of inertia is the analog of inertia for rotational objects. It is the change in
torque required to make a unit change in angular acceleration. It has units of change
in torque per change in angular acceleration, or Nm/(rad/s®) = kgem?.

Note: (rad) is considered unitless

Energy Equations

Potential energy ...

... for a mass =mgh
Kinetic energy ...

... for amoment of inertia = % Jo?

29

Appendix B: Implementation Notes

This appendix contains many details that will be critical during simulation.

Simulink Notes

To start Simulink: First open MATLAB. Then either type simulink in the command
window, or click on the Simulink button (enlarged below) on the toolbar.

it

Setting up Simulink parameters: When running a Simulink simulation, you need to
set up a few parameters in order to keep conformity with Windows Target. From
the Simulation menu, select Configuration Parameters, then in the Solver
Options box, set Type to "Fixed-step" and "odel: Euler".

Changing simulation Start/Stop time: You can also change Start Time and Stop
Time in the Simulation Parameters box.

Nonlinear RWP model: There is a nonlinear RWP model available for simulation.
To find it, type pend blks in the MATLAB command window. You will need the
Reaction Wheel Block Diagram Model (nonlinear model) and the Reaction Wheel
Animation (animation block). Points to remember:

o For the Reaction Wheel Block Diagram Model, "Taul" corresponds to the
pendulum arm. (That arm is not actuated, but that's where the disturbances
are applied.)

o "Tau2" corresponds to the rotor. (That's where the control effort should be
applied.)

o Don’t forget to include a Saturation block (to saturate the control effort at
+10) before "Tau2".

o The nonlinear model outputs encoder states (¢,), but your controller
uses delta states (00, instead of 0p).

o You can change the initial conditions of the Reaction Wheel Block Diagram
Model by double-clicking on the block. You should only have to change the
first initial condition (pendulum position, where r signifies upwards).

o To slow down animation speed, go to Simulation » Configuration
Parameters, and decrease the "Max step size". (This will force Simulink to
do more calculations, thus slowing down the simulation.)

