Plan of the Lecture

> Review: prototype 2nd-order system; transient response
specifications

> Today’s topic: system-modeling diagrams;
interconnections; linearization

Goal: develop a methodology for representing and analyzing
systems by means of block diagrams



System Modeling Diagrams

d
large system s——— smaller blocks (subsystems)
compose

— this is the core of systems theory

We will take smaller blocks from some given library and play
with them to create/build more complicated systems.



All-Integrator Diagrams

Our library will consist of three building blocks:

U14+>©—> Y
B = Uy — U2
(or sY) (orY) U v y=au
integrator summing junction constant gain

Two warnings:

» We can (and will) work either with u,y (time domain) or
with U, Y (s-domain) — will often go back and forth

» When working with block diagrams, we typically ignore
initial conditions.

This is the lowest level we will go to in lectures; in the labs, you
will implement these blocks using op amps.



Example 1

Build an all-integrator diagram for
j=u — Y =U

This is obvious:

u 1/s J 1/s

or




Example 2

(building on Example 1)
Y+ a1y + agy =u <= Y +a1sY +apY =U

24 a1s+ag

Always solve for the highest derivative:

J=—a1y —agy + u
—_————
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Example 3

Build an all-integrator diagram for a system with transfer

function
b18 + bo

- s2+ais+ ag
1
s2 4+ a1s+ ag

H(s)

Step 1: decompose H(s) = - (b1s + by)

1 X

s2+a1s+ag

U

b18+bg 4>Y

— here, X is an auxiliary (or intermediate) signal

Note: bg + bys involves differentiation, which we cannot
implement using an all-integrator diagram. But we will see that
we don’t need to do it directly.



Example 3, continued

1
Step 1: d H(s)=———-(b b
ep ecompose H(s) PR (bis + bo)
1 X
U 2+ ais+ag Basieto Y

Step 2: The transformation U — X is from Example 2:

2
s“X
vt d1ys| 2 X

=

ago

1/s X




Example 3, continued
Step 3: now we notice that
Y(s) =b1sX(s) + bo X (s),

and both X and sX are available signals in our diagram. So:

b1
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Example 3, continued

b b
All-integrator diagram for H(s) = 218¢
s+ a1s+ ap

by
U%Ez){l/s SX‘I/S S +O+ Y
-
Qo

Can we write down a state-space model corresponding to this
diagram?



Example 3, continued

b1
U%E;{l/s SX’us Xty
-
Qo

State-space model:

$?X =U —a1sX — apX Y =b1sX + bpX

I=—a1& —apT +u Yy = bi1Z + box



Example 3, continued

State-space model:

T =—a1% — apr +u

T =, Toa=1T

() = () () ()
T2 —ag —aq xT9 1

This is called controller canonical form.

P> Easily generalizes to dimension > 1

y = b1t + box

» The reason behind the name will be made clear later in the

semester



Example 3, wrap-up

b b
All-integrator diagram for H(s) = %
s2 +ays + ag

State-space model:

()= (o ) () 0)e vmo (D)

Important: for a given H(s), the diagram is not unique. But,
once we build a diagram, the state-space equations are unique
(up to coordinate transformations).



Basic System Interconnections

Now we will take this a level higher — we will talk about
building complex systems from smaller blocks, without
worrying about how those blocks look on the inside (they could
themselves be all-integrator diagrams, etc.)

Block diagrams are an abstraction (they hide unnecessary
“low-level” detail ...)

Block diagrams describe the flow of information



Basic System Interconnections: Series & Parallel

Series connection

U

Gy

Ga Y

Y

— =G1Gy

U

(G is common

notation for t.f.’s)

U—

G1G>

—Y

(for SISO systems, the order of G; and G»

does not matter)

Parallel connection

G1

]+

Gi1+ Gy ——Y




Basic System Interconnections: Negative Feedback

Riog' G1 Y
- W Find the transfer function from R
(reference) to Y
Gy
G
ST aGY

U=R-W 12

Y =GiU

=Gi(R-W) G1

=GR - G1GyYY U%H—%%Y




Basic System Interconnections: Negative Feedback

Rj*Qg' G1 Y G
- — Y=—"1_R
W 1+ GGy

G

The gain of a negative feedback loop:

forward gain

1 + loop gain

This is an important relationship, easy to derive — no need to
memorize it.



Unity Feedback

Other feedback configurations are also possible:

E[U
RO G [ G Y

This is called unity feedback — no component on the feedback
path.
Common structure (saw this in Lecture 1):
> R = reference
U = control input

Y = output

G = plant (also denoted by P)

>
>
» E = error
>
» (5 = controller or compensator (also denoted by C or K)



Unity Feedback
E
R—EOP G Gif Ty

f d gai
Let’s practice with deriving transfer functions: M
1 + loop gain

» Reference R to output Y:
Yy G1Go
R 1 + G1Go

» Reference R to control input U:
V__G
R 1+ GG

» Error E to output Y:

Y
5= G1G- (no feedback path)



Block Diagram Reduction

Given a complicated diagram involving series, parallel, and
feedback interconnections, we often want to write down an
overall transfer function from one of the variables to another.

This requires lots of practice: read FPE, Section 3.2 for
examples.

General strategy:

>
>

Name all the variables in the diagram

Write down as many relationships between these variables
as you can

Learn to recognize series, parallel, and feedback
interconnections

Replace them by their equivalents
Repeat



Review: State-Space Models

r = Ax + Bu
y=Cx
State-space models are useful and convenient for

writing down system models for different types
of systems, in a unified manner.

What if the models are nonlinear?

— Linearization!



Example: Pendulum

Newton’s 2nd law (rotational motion):

T = J o
Te S~~~ ~—~ S~~~
A total moment angular
‘external torque of inertia acceleration

torque

= pendulum torque + external torque

dulum t = — ing- ¢
pendulum torque mg sin L

force lever arm

moment of inertia J = m¢?

—mglsin 0 + T, = ml?0

(92 —ESIHQ—FW

T (nonlinear equation)



Example: Pendulum

(9 = —— sm 0+ — (nonlinear equation)
1 62
For small 6, use the approximation sin 6 ~ 6

3 . 1

_sn®) o 0= 69 + —pT

— 0 i .

‘ State-space form: 6 =6, 6, =0
= -2 -1 1 2 3

il . 1 g 1
o o= =0+ ST = =0+ T




Linearization
Taylor series expansion:
1
f(@) = f(xo) + f'(wo)(z = w0) + 5 " (o) (z — o) + ...
~ f(:L‘o) + f/(l‘o)(l‘ — :Eo) linear approximation around x = xg

Control systems are generally nonlinear:

= f(x, u) nonlinear state-space model
al (75} fl

e=| | w={ | r=|:
Tn Um In

Assume x = 0,u = 0 is an equilibrium point: f(0,0) =0

This means that, when the system is at rest and no control is
applied, the system does not move.



Linearization
Linear approx. around (z,u) = (0,0) to all components of f:

1 = f1(z,u), cey Tn = fnlx,u)
Foreach:=1,...,n,
i(z,u) = £(0,0) + =—(0,0 0,0
fila,u) = £(0,0) + Z20,0)21 +...+ Z2-(0,0),
=0
ofi ofi
0,0 0,0
50,0 4+ 5200w
Linearized state-space model:
T = Ax =+ B’LL, where A;; = 0f: , B = Of:
axj z=0 auk =0

Important: since we have ignored the higher-order terms, this
linear system is only an approzimation that holds only for small
deviations from equilibrium.



Example: Pendulum, Revisited
Original nonlinear state-space model:

01 = f1(91, 05, Te) =0y — already linear
1
b2 = fo(bh,02,Tc) = — %Slneﬁr —ale
Linear approx. of fy around equilibrium (61,62, T:) = (0,0, 0):
df2 g dfa 0 fo 1
22 _ o 0 22 -
o0, — (" o, oT. — mi2
ofal __8 Ofal _ 0f2) _ 1
a91 14 892 3Te me?
0 0 0
Linearized state-space model of the pendulum:
01 = 0o
92 = 91 T — valid for small deviations from equ.

Y 62



General Linearization Procedure

» Start from nonlinear state-space model

jj:f(xvu)

» Find equilibrium point (zg,ug) such that f(zg,u) =0

Note: different systems may have different equilibria,
not necessarily (0,0), so we need to shift variables:

Note that the transformation is invertible:

r=x+z0, u=u+ug



General Linearization Procedure

» Pass to shifted variables = x — xg, u = u — ug

(2o does not depend on t)

— equivalent to original system

» The transformed system is in equilibrium at (0, 0):

£(0,0) = f(xo,ug) =0

» Now linearize:

Ofi
317]‘

_ o

Z = A@ aF BQ, where A;; = M
k

) Bik

z=x(
u=ugq

r=xQ
u=ugq



General Linearization Procedure
» Why do need the shift ©* =+ — 2o, u = u — ug?
» This requires some thought. Indeed, we may talk about

a linear approximation of any smooth function f at
any point xg:

f(x) = f(xo)+f (xo)(x—x0) — f(z0) does not have to be 0

» The key is that we want to approximate a given
nonlinear system & = f(z,u) by a linear system
& = Az + Bu (may have to shift coordinates:
T T — T, U U— Up)

Any linear system must have an equilibrium point at

(x,u) = (0,0):
f(z,u) = Az + Bu f(0,0) = A0 + B0 = 0.



