
Plan of the Lecture

I Review: prototype 2nd-order system; transient response
specifications

I Today’s topic: system-modeling diagrams;
interconnections; linearization

Goal: develop a methodology for representing and analyzing
systems by means of block diagrams



System Modeling Diagrams

large system
decompose−−−−−−⇀↽−−−−−−
compose

smaller blocks (subsystems)

— this is the core of systems theory

We will take smaller blocks from some given library and play
with them to create/build more complicated systems.



All-Integrator Diagrams

Our library will consist of three building blocks:

ẏ y1/s
(or sY ) (or Y )

u1 y
= u1 � u2

u2

+

�

u y = aua

integrator summing junction constant gain

Two warnings:

I We can (and will) work either with u, y (time domain) or
with U, Y (s-domain) — will often go back and forth

I When working with block diagrams, we typically ignore
initial conditions.

This is the lowest level we will go to in lectures; in the labs, you
will implement these blocks using op amps.



Example 1

Build an all-integrator diagram for

ÿ = u ⇐⇒ s2Y = U

This is obvious:

1/s 1/su
ẏ

y

or

1/s 1/sU
sY

Y



Example 2
(building on Example 1)

ÿ + a1ẏ + a0y = u ⇐⇒ s2Y + a1sY + a0Y = U

or Y (s) =
U(s)

s2 + a1s+ a0

Always solve for the highest derivative:

ÿ = −a1ẏ − a0y + u︸ ︷︷ ︸
=v

1/s 1/s
sY

Y
+

�

a1

a0

�U
V



Example 3

Build an all-integrator diagram for a system with transfer
function

H(s) =
b1s+ b0

s2 + a1s+ a0

Step 1: decompose H(s) =
1

s2 + a1s+ a0
· (b1s+ b0)

U Y
1

s2 + a1s + a0
b1s + b0

X

— here, X is an auxiliary (or intermediate) signal

Note: b0 + b1s involves differentiation, which we cannot
implement using an all-integrator diagram. But we will see that
we don’t need to do it directly.



Example 3, continued

Step 1: decompose H(s) =
1

s2 + a1s+ a0
· (b1s+ b0)

U Y
1

s2 + a1s + a0
b1s + b0

X

Step 2: The transformation U → X is from Example 2:

1/s 1/s
sX

X
+

�

a1

a0

�U
s2X



Example 3, continued

Step 3: now we notice that

Y (s) = b1sX(s) + b0X(s),

and both X and sX are available signals in our diagram. So:

1/s 1/s
sX X+

�

a1

a0

�U
s2X +

+

b1

b0 Y



Example 3, continued

All-integrator diagram for H(s) =
b1s+ b0

s2 + a1s+ a0

1/s 1/s
sX X+

�

a1

a0

�U
s2X +

+

b1

b0 Y

Can we write down a state-space model corresponding to this
diagram?



Example 3, continued

1/s 1/s
sX X+

�

a1

a0

�U
s2X +

+

b1

b0 Y

State-space model:

s2X = U − a1sX − a0X
ẍ = −a1ẋ− a0x+ u

Y = b1sX + b0X

y = b1ẋ+ b0x



Example 3, continued

State-space model:

ẍ = −a1ẋ− a0x+ u y = b1ẋ+ b0x

x1 = x, x2 = ẋ

(
ẋ1
ẋ2

)
=

(
0 1
−a0 −a1

)(
x1
x2

)
+

(
0
1

)
u y =

(
b0 b1

)(x1
x2

)

This is called controller canonical form.

I Easily generalizes to dimension > 1

I The reason behind the name will be made clear later in the
semester



Example 3, wrap-up

All-integrator diagram for H(s) =
b1s+ b0

s2 + a1s+ a0

1/s 1/s
sX X+

�

a1

a0

�U
s2X +

+

b1

b0 Y

State-space model:(
ẋ1
ẋ2

)
=

(
0 1
−a0 −a1

)(
x1
x2

)
+

(
0
1

)
u y =

(
b0 b1

)(x1
x2

)

Important: for a given H(s), the diagram is not unique. But,
once we build a diagram, the state-space equations are unique
(up to coordinate transformations).



Basic System Interconnections

Now we will take this a level higher — we will talk about
building complex systems from smaller blocks, without
worrying about how those blocks look on the inside (they could
themselves be all-integrator diagrams, etc.)

Block diagrams are an abstraction (they hide unnecessary
“low-level” detail ...)

Block diagrams describe the flow of information



Basic System Interconnections: Series & Parallel
Series connection

G1U YG2
(G is common

notation for t.f.’s)

Y

U
= G1G2

G1G2U Y

(for SISO systems, the order of G1 and G2

does not matter)
Parallel connection

G1

U Y

G2

+

+

Y

U
= G1 +G2

G1 + G2U Y



Basic System Interconnections: Negative Feedback

G1
U

Y

G2

+
�R

W
Find the transfer function from R
(reference) to Y

U = R−W
Y = G1U

= G1(R−W )

= G1R−G1G2Y

=⇒ Y =
G1

1 +G1G2
R

G1

1 + G1G2
U Y



Basic System Interconnections: Negative Feedback

G1
U

Y

G2

+
�R

W =⇒ Y =
G1

1 +G1G2
R

The gain of a negative feedback loop:

forward gain

1 + loop gain

This is an important relationship, easy to derive — no need to
memorize it.



Unity Feedback

Other feedback configurations are also possible:

G1
U

YG2
+
�R

E

This is called unity feedback — no component on the feedback
path.

Common structure (saw this in Lecture 1):

I R = reference

I U = control input

I Y = output

I E = error

I G1 = plant (also denoted by P )

I G2 = controller or compensator (also denoted by C or K)



Unity Feedback

G1
U

YG2
+
�R

E

Let’s practice with deriving transfer functions:
forward gain

1 + loop gain
I Reference R to output Y :

Y

R
=

G1G2

1 +G1G2

I Reference R to control input U :

U

R
=

G2

1 +G1G2

I Error E to output Y :

Y

E
= G1G2 (no feedback path)



Block Diagram Reduction

Given a complicated diagram involving series, parallel, and
feedback interconnections, we often want to write down an
overall transfer function from one of the variables to another.

This requires lots of practice: read FPE, Section 3.2 for
examples.

General strategy:

I Name all the variables in the diagram

I Write down as many relationships between these variables
as you can

I Learn to recognize series, parallel, and feedback
interconnections

I Replace them by their equivalents

I Repeat



Review: State-Space Models

ẋ = Ax +Bu

y = Cx

State-space models are useful and convenient for
writing down system models for different types
of systems, in a unified manner.

What if the models are nonlinear?

— Linearization!



Example: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example: Pendulum

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)

For small θ, use the approximation sin θ ≈ θ

sinHΘL
Θ

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

θ̈ = −g

`
θ +

1

m`2
Te

State-space form: θ1 = θ, θ2 = θ̇

θ̇2 = −g

`
θ +

1

m`2
Te = −g

`
θ1 +

1

m`2
Te

(
θ̇1

θ̇2

)
=

(
0 1
−g
` 0

)(
θ1

θ2

)
+

(
0
1
m`2

)
Te



Linearization

Taylor series expansion:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + . . .

≈ f(x0) + f ′(x0)(x− x0) linear approximation around x = x0

Control systems are generally nonlinear :

ẋ = f(x, u) nonlinear state-space model

x =

x1...
xn

 u =

u1
...
um

 f =

f1...
fn


Assume x = 0, u = 0 is an equilibrium point: f(0, 0) = 0

This means that, when the system is at rest and no control is
applied, the system does not move.



Linearization
Linear approx. around (x, u) = (0, 0) to all components of f :

ẋ1 = f1(x, u), . . . , ẋn = fn(x, u)

For each i = 1, . . . , n,

fi(x, u) = fi(0, 0)︸ ︷︷ ︸
=0

+
∂fi
∂x1

(0, 0)x1 + . . .+
∂fi
∂xn

(0, 0)xn

+
∂fi
∂u1

(0, 0)u1 + . . .+
∂fi
∂um

(0, 0)um

Linearized state-space model:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=0
u=0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=0
u=0

Important: since we have ignored the higher-order terms, this
linear system is only an approximation that holds only for small
deviations from equilibrium.



Example: Pendulum, Revisited
Original nonlinear state-space model:

θ̇1 = f1(θ1, θ2, Te) = θ2 — already linear

θ̇2 = f2(θ1, θ2, Te) = −g

`
sin θ1 +

1

m`2
Te

Linear approx. of f2 around equilibrium (θ1, θ2, Te) = (0, 0, 0):

∂f2
∂θ1

= −g

`
cos θ1

∂f2
∂θ2

= 0
∂f2
∂Te

=
1

m`2

∂f2
∂θ1

∣∣∣∣∣
0

= −g

`

∂f2
∂θ2

∣∣∣∣∣
0

= 0
∂f2
∂Te

∣∣∣∣∣
0

=
1

m`2

Linearized state-space model of the pendulum:

θ̇1 = θ2

θ̇2 = −g

`
θ1 +

1

m`2
Te valid for small deviations from equ.



General Linearization Procedure

I Start from nonlinear state-space model

ẋ = f(x, u)

I Find equilibrium point (x0, u0) such that f(x0, u0) = 0

Note: different systems may have different equilibria,
not necessarily (0, 0), so we need to shift variables:

x = x− x0 u = u− u0
f(x, u) = f(x+ x0, u+ u0) = f(x, u)

Note that the transformation is invertible:

x = x+ x0, u = u+ u0



General Linearization Procedure

I Pass to shifted variables x = x− x0, u = u− u0
ẋ = ẋ (x0 does not depend on t)

= f(x, u)

= f(x, u)

— equivalent to original system

I The transformed system is in equilibrium at (0, 0):

f(0, 0) = f(x0, u0) = 0

I Now linearize:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=x0
u=u0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=x0
u=u0



General Linearization Procedure

I Why do need the shift x = x− x0, u = u− u9?
I This requires some thought. Indeed, we may talk about

a linear approximation of any smooth function f at
any point x0:

f(x) ≈ f(x0)+f
′(x0)(x−x0) — f(x0) does not have to be 0

I The key is that we want to approximate a given
nonlinear system ẋ = f(x, u) by a linear system
ẋ = Ax+Bu (may have to shift coordinates:
x 7→ x− x0, u 7→ u− u0)
Any linear system must have an equilibrium point at
(x, u) = (0, 0):

f(x, u) = Ax+Bu f(0, 0) = A0 +B0 = 0.


