
Plan of the Lecture

I Review: control, feedback, etc.

I Today’s topic: linear systems and their dynamic response

Goal: a general framework that encompasses all examples of
interest. Once we have mastered this framework, we can
proceed to analysis and then to design.



Notation Reminder

We will be looking at dynamic systems whose evolution in
time is described by differential equations with external
inputs.

We will not write the time variable t explicitly, so we use

x instead of x(t)

ẋ instead of x′(t) or
dx

dt

ẍ instead of x′′(t) or
d2x

dt2

etc.



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

mẍ = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

ẍ+
ρ

m
ẋ+

k

m
x =

u

m
2nd-order linear ODE

k

m



Example 1: Mass-Spring System

um

x

ẍ+
ρ

m
ẋ+

k

m
x =

u

m
2nd-order linear ODE

Canonical form: convert to a system of 1st-order ODEs

ẋ = v (definition of velocity)

v̇ = − ρ
m
v − k

m
x+

1

m
u



Example 1: Mass-Spring System

um

x

State-space model: express in matrix form

(
ẋ

v̇

)
=

(
0 1
− k
m − ρ

m

)(
x

v

)
+

(
0
1
m

)
u

Important: start reviewing your linear algebra now!!

I matrix-vector multiplication; eigenvalues and eigenvectors; etc.



General n-Dimensional State-Space Model

state x =



x1
...
xn


 ∈ Rn input u =



u1
...
um


 ∈ Rm



ẋ1
...
ẋn


 =




A

n× n
matrix





x1
...
xn


+




B

n×m
matrix





u1
...
um




ẋ = Ax +Bu



Partial Measurements

state x =



x1
...
xn


 ∈ Rn input u =



u1
...
um


 ∈ Rm

output y =



y1
...
yp


 ∈ Rp y = Cx C– p× n matrix

ẋ = Ax+Bu

y = Cx

Example: if we only care about (or can only measure) x1, then

y = x1 =
(
1 0 . . . 0

)




x1
x2
...
xn






State-Space Models: Bottom Line

ẋ = Ax +Bu

y = Cx

State-space models are useful and convenient for
writing down system models for different types
of systems, in a unified manner.

When working with state-space models, what are
states and what are inputs?

— match against ẋ = Ax+Bu



State-Space Models

ẋ = Ax+Bu

y = Cx

where:

I x(t) ∈ Rn is the state at time t

I u(t) ∈ Rm is the input at time t

I y(t) ∈ Rp is the output at time t

and

I A ∈ Rn×n is the dynamics matrix

I B ∈ Rn×m is the control matrix

I C ∈ Rp×n is the sensor matrix

How do we determine the output y for a given input u?

Reminder: we will only consider single-input, single-output (SISO)

systems, i.e., u(t), y(t) ∈ R for all times t of interest. (m = p = 1)



Impulse Response
(Review from ECE 210)

ẋ = Ax + Bu
y = Cx

u y

Unit impulse (or Dirac’s δ-function):

1. δ(t) = 0 for all t 6= 0

2.

∫ a

−a
δ(t)dt = 1 for all a > 0

t

�(t)

0

It is useful to think of δ(t) as a limit of impulses of unit area:

t
0

1/"

"

area = 1
as ε→ 0, the impulse gets taller
(1/ε→ +∞), but the area
under its graph remains at 1



Impulse Response

ẋ = Ax + Bu
y = Cx

u y

zero initial condition: x(0) = 0

Consider the input

u(t) = δ(t− τ) unit impulse applied at t = τ

The system is linear and time-invariant (LTI), with zero I.C.:

u(t) = δ(t− τ)
x(0)=0; LTI system−−−−−−−−−−−→ y(t) = h(t− τ)

The function h is the impulse response of the system.



Impulse Response

ẋ = Ax + Bu
y = Cx

u y

zero initial condition: x(0) = 0

u(t) = δ(t− τ)
x(0)=0; LTI system−−−−−−−−−−−→ y(t) = h(t− τ)

Questions to consider:

1. If we know h, how can we find the system’s response to
other (arbitrary) inputs?

2. If we don’t know h, how can we determine it?

We will start with Question 1.



Impulse Response

ẋ = Ax + Bu
y = Cx

u y

zero initial condition: x(0) = 0

Question: If we know h, how can we find the system’s response
to other (arbitrary) inputs?

Recall the sifting property of the δ-function: for any function f
which is “well-behaved” at t = τ ,

∫ ∞

−∞
f(t)δ(t− τ)dt = f(τ)

— any reasonably regular function can be represented as an
integral of impulses!!



Impulse Response

ẋ = Ax + Bu
y = Cx

u y

zero initial condition: x(0) = 0

Question: If we know h, how can we find the system’s response
to other (arbitrary) inputs?

By the sifting property, for a general input u(t) we can write

u(t) =

∫ ∞

−∞
u(τ)δ(t− τ)dτ.

Now we recall the superposition principle: the response of a
linear system to a sum (or integral) of inputs is the sum (or
integral) of the individual responses to these inputs.



Impulse Response

ẋ = Ax + Bu
y = Cx

u y

zero initial condition: x(0) = 0

The superposition principle: the response of a linear system to
a sum (or integral) of inputs is the sum (or integral) of the
individual responses to these inputs.

u(t) =

∫ ∞

−∞
u(τ)δ(t− τ)dτ −→ y(t) =

∫ ∞

−∞
u(τ) h(t− τ)︸ ︷︷ ︸

response to
δ(t− τ)

dτ

— the integral that defines y(t) is a convolution of u and h.



Impulse Response

ẋ = Ax + Bu
y = Cx

u y

zero initial condition: x(0) = 0

Conclusion so far: for zero initial conditions, the output
is the convolution of the input with the system impulse
response:

y(t) = u(t) ? h(t) = h(t) ? u(t) =

∫ ∞

−∞
u(τ)h(t− τ)dτ

Q: Does this formula provide a practical way of computing the
output y for a given input u?

A: Not directly (computing convolutions is not exactly
pleasant), but ...we can use Laplace transforms.



Laplace Transforms and the Transfer Function
Reminder : the two-sided Laplace transform of a function f(t) is

F (s) =

∫ ∞

−∞
f(τ)e−sτdτ, s ∈ C

time domain frequency domain

u(t) U(s)

h(t) H(s)

y(t) Y (s)

convolution in time domain ←→ multiplication in frequency domain

y(t) = h(t) ? u(t) ←→ Y (s) = H(s)U(s)

The Laplace transform of the impulse response

H(s) =

∫ ∞

−∞
h(τ)e−sτdτ

is called the transfer function of the system.



Laplace Transforms and the Transfer Function

Y (s) = H(s)U(s), where H(s) =

∫ ∞

−∞
h(τ)e−sτdτ

Limits of integration:

I We only deal with causal systems — output at time t is
not affected by inputs at future times t′ > t

I If the system is causal, then h(t) = 0 for t < 0 — h(t) is
the response at time t to a unit impulse at time 0

I We will take all other possible inputs (not just impulses) to
be 0 for t < 0, and work with one-sided Laplace transforms:

y(t) =

∫ ∞

0
u(τ)h(t− τ)dτ

H(s) =

∫ ∞

0
h(τ)e−sτdτ



Laplace Transforms and the Transfer Function

Y (s) = H(s)U(s), where H(s) =

∫ ∞

−∞
h(τ)e−sτdτ

Given u(t), we can find U(s) using tables of Laplace transforms
or MATLAB. But how do we know h(t) [or H(s)]?

I Suppose we have a state-space model:

ẋ = Ax + Bu
y = Cx

u y

In this case, we have an exact formula:

H(s) = C(Is−A)−1B (matrix inversion)

h(t) = CeAtB, t ≥ 0− (matrix exponential)

— will not encounter this until much later in the semester.



Laplace Transforms and the Transfer Function

Y (s) = H(s)U(s), where H(s) =

∫ ∞

−∞
h(τ)e−sτdτ

I So, how should we compute H(s) in practice?

Try injecting some specific inputs and see what happens at
the output.

Let’s try u(t) = est, t ≥ 0 (s is some fixed number)

y(t) =

∫ ∞

0
h(τ)u(t− τ)dτ (because u ? h = h ? u)

=

∫ ∞

0
h(τ)es(t−τ)dτ

= est
∫ ∞

0
h(τ)e−sτdτ

= estH(s)

– so, u(t) = est is multiplied by H(s) to give the output.



Example

ẏ = −ay + u (think y = x, full measurement)

u(t) = est (always assume u(t) = 0 for t < 0)

y(t) = H(s)est — what is H?

Let’s use the system model:

ẏ(t) =
d

dt

(
H(s)est

)
= sH(s)est

Substitute into ẏ = −ay + u:

sH(s)��est = −aH(s)��est + ��est (∀s; t > 0)

sH(s) = −aH(s) + 1

H(s) =
1

s+ a
=⇒ y(t) =

est

s+ a



Example (continued)

ẏ = −ay + u

H(s) =
1

s+ a

Now we can fund the impulse response h(t) by taking the
inverse Laplace transform — from tables,

h(t) =

{
e−at, t ≥ 0

0, t < 0



Determining the Impulse Response

u yh

u(t) = est, t ≥ 0
x(0)=0; LTI system−−−−−−−−−−−→ y(t) = estH(s)

Back to our two questions:

1. If we know h, how can we find y for a given u?

2. If we don’t know h, how can we determine it?

We have answered Question 1. Now let’s turn to Question 2.

One idea: inject the input u(t) = est, determine y(t), compute

H(s) =
y(t)

u(t)
;

repeat for all s of interest. Q: Is this a good idea?



Determining the Impulse Response

u(t) = est y(t) = estH(s)h

compute H(s) =
y(t)

u(t)
, repeat for as many values of s as

necessary

Q: Is this likely to work in practice?

A: No — est blows up very quickly if s > 0, and decays to 0
very quickly if s < 0.

So we need sustained, bounded signals as inputs.

This is possible if we allow s to take on complex values.



Review: Complex Numbers

s = a︸︷︷︸
real
part

+j b︸︷︷︸
imaginary

part

— rectangular form

s

r cos'

r sin'

'r =

p a
2 +

b2

Re(s)

Im(s)

0 a

b

Polar form:

s = rejϕ

r = |s| =
√
a2 + b2

(magnitude)

ϕ = ∠s = tan−1
(
b

a

)

(phase)

Euler’s formula: ejϕ = cosϕ+ j sinϕ



Frequency Response

u yh

u(t) = A cos(ωt) A – amplitude; ω – (angular) frequency, rad/s

From Euler’s formula:

A cos(ωt) =
A

2

(
ejωt + e−jωt

)

By linearity, the response is

y(t) =
A

2

(
H(jω)ejωt +H(−jω)e−jωt

)

where H(jω) =

∫ ∞

0
h(τ)e−jωτdτ

H(−jω) =

∫ ∞

0
h(τ)ejωτ︸ ︷︷ ︸

complex
conjugate

dτ = H(jω)

(recall that h(τ) is real-valued)



Frequency Response

u yh

u(t) = A cos(ωt) −→ y(t) =
A

2

(
H(jω)ejωt +H(−jω)e−jωt

)

H(jω) ∈ C =⇒ H(jω) = M(ω)ejϕ(ω)

H(−jω) = M(ω)e−jϕ(ω)

Therefore,

y(t) =
A

2
M(ω)

[
ej(ωt+ϕ(ω)) + e−j(ωt+ϕ(ω))

]

= AM(ω) cos
(
ωt+ ϕ(ω)

)
(only true in steady state)

The (steady-state) response to a cosine signal with amplitude
A and frequency ω is still a cosine signal with amplitude
AM(ω), same frequency ω, and phase shift ϕ(ω)



Frequency Response

u yh

u(t) = A cos(ωt) −→ y(t) = A M(ω)︸ ︷︷ ︸
amplitude

magnification

cos
(
ωt+ ϕ(ω)︸ ︷︷ ︸

phase
shift

)

Still an incomplete picture:

I What about response to general signals (not necessarily
sinusoids)? — always given by Y (s) = H(s)U(s)

I What about response under nonzero I.C.’s?— we will see
that, if the system is stable, then

total response =
transient response

(depends on I.C.)
+

steady-state response

(independent of I.C.)

— need more on Laplace transforms


