ECE 486: Control Systems

Lecture 9A: Pl Tuning for First-Order Systems




Key Takeaways

This lecture describes a method to tune PID controllers using
pole placement.

For first-order systems, the approach is to:
* Use Pl control and

* Select the gains to place the two closed-loop poles at
desired locations.

The choice of natural frequency (time constant) is critical.




Desigh Approach: Pole Placement

1. Approximate the plant dynamics by a first or second-order
ODE using the dominant pole approximation.

2. If the dynamics are first-order: Use a Pl controller to place
the two poles at a desired location.

2. If dynamics are second-order:

Use a PID controller to place the three poles.

Avoid use of derivative control if plant is well-damped. This
will restrict the choice of the three poles.

A reasonable starting point is to place all poles at s = —w,,.

The choice of natural frequency (time constant) is critical.




Desigh Approach: Pole Placement

1. Approximate the plant dynamics by a first or second-order
ODE using the dominant pole approximation.

2. If the dynamics are first-order: Use a Pl controller to place
the two poles at a desired location.

2. If dynamics are second-order:
Use a PID controller to place the three poles.

Avoid use of derivative control if plant is well-damped. This
will restrict the choice of the three poles.

3. Further tuning is often required. Use root locus to tune one
gain at a time.
4. Implementation:

D-control: Use smoothed derivative or rate feedback
I-control: Use anti-windup (to be discussed later)



Pl Tuning For First-Order Systems

Example plant model:

y(t) + apy(t) = bou(t) + bod(t)  where ap = 2 and by = 3
Formal design requirements can be stated. Roughly a faster
closed-loop response will:

* |ead to better reference tracking and disturbance rejection,

* but it will also increase the actuator effort and degrade the
noise rejection.

Important: First-order ODE is typically an approximate model.
Formal tools to assess the impact of model uncertainty later.

If the closed-loop is too fast then the unmodeled dynamics
will degrade performance and may even cause instability.



Closed-Loop Model

Dynamics of the plant:
y(t) + aoy(t) = bou(t) + bod(t) where ap =2 and by = 3

Pl Controller:

u(t) = Kye(t) + Ki./o e(7)dr

Sub for u into plant dynamics and collect terms.
Closed-loop dynamics are:

(0) + (a0 + b y) §(E) + oI y(8) = by, 7(0) + bo i (1) + bod (1)

=2Cwn =w



Pl Tuning

Dynamics of the closed-loop:

(1) + (a0 + boKy) §(t) + b K y(t) = bo G #(t) + bo i (t) + bod ()

=2Cwn =w
Pole Placement:
* Select the closed-loop (w,;,, {) based on a desired settling

time and peak overshoot. (Starting pointis { = 1.)

* Closed-loop fromrtoyhasazeroats = —I’{{—;

This zero increases overshoot and reduces rise time.

* Solve for controller gains: 2 _
5 K, = % and K, = Zngo 20

* Integral control yields zero steady-state error.



Comparison of Two Pl Controllers

K, is designed for faster response than K,.

Design | ¢ | w,, @ || Poles, S12 | My, | Tsetrie, s€C || K, K;

ny gec

Ki(s) || 1.0| 6.67 | -6.67,-6.67 | O 0.45 3.78 | 14.81
Ks(s) || 1.0 | 2.86 -2.86,-2.86 | 0 1.05 1.24 | 2.72
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