
ECE 486: Control Systems

Lecture 20A: Frequency Domain Performance



Key Takeaways

Most design requirements can be specified in the frequency 
domain as bounds:

A) Good reference tracking and disturbance rejection

𝑆 𝑗𝜔 ≪ 1 at low frequencies

B) Good noise rejection

𝑇 𝑗𝜔 ≪ 1 at high frequencies

C) Reasonable control commands

𝐾 𝑗𝜔 𝑆(𝑗𝜔) is bounded

D) Good robustness

𝑆 𝑗𝜔 ≤ 2.5 at all frequencies
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Requirements: Closed-Loop Stability + Robustness

Fact: Closed-loop is stable if and only if all zeros of 
1+G(s)K(s) are in the LHP.

We require:

A) G(s)K(s) has no pole/zero cancellations in the CRHP

B) 𝑆 𝑠 = 1

1+𝐺 𝑠 𝐾(𝑠)
is stable

We also showed previously that 𝑆 𝑗𝜔 ≤ 2.5 at all 
frequencies ensures good disk margins.
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Requirements: Reference Tracking

Goal: The output y should track the reference command r.

The transfer function from r to e=r-y is:

𝑆 𝑠 = 1

1+𝐺 𝑠 𝐾(𝑠)
(Sensitivity)

Consider a sinusoidal reference 𝑟 𝑡 = 𝑅0cos(𝜔𝑡). Then:
𝑒 𝑡 → 𝑆 𝑗𝜔 𝑅0 cos( 𝜔𝑡 + ∠𝑆 𝑗𝜔 )

We require 𝑆 𝑗𝜔 ≪ 1 for good tracking at 𝜔.

If 𝜔 = 0 then 𝑟 𝑡 = 𝑅0 (step) and 𝑒 𝑡 → 𝑆(𝑗0)𝑅0.
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Requirements: Disturbance Rejection

Goal: The disturbance d should have small effect on output y.

The transfer function from d to y is G(s) in open loop and 
G(s)S(s) in closed-loop.

Consider a sinusoidal disturbance 𝑑 𝑡 = 𝐷0cos(𝜔𝑡). Then: 
(OL) 𝑦 𝑡 → 𝐺(𝑗𝜔) 𝐷0 cos( 𝜔𝑡 + ∠𝐺(𝑗𝜔 )

(CL)   𝑦 𝑡 → 𝐺(𝑗𝜔)𝑆 𝑗𝜔 𝐷0 cos( 𝜔𝑡 + ∠𝐺(𝑗𝜔)𝑆 𝑗𝜔 )

We require 𝑆 𝑗𝜔 ≪ 1 for good disturbance rejection at 𝜔.
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Requirements: Noise Rejection

Goal: The noise n should have small effect on output y.

The transfer function from n to y is –T(s) where:

𝑇 𝑠 = 𝐺 𝑠 𝐾(𝑠)

1+𝐺 𝑠 𝐾(𝑠)
(Complementary Sensitivity)

Consider a sinusoidal noise 𝑛 𝑡 = 𝑁0cos(𝜔𝑡). Then:
𝑦 𝑡 → − 𝑇 𝑗𝜔 𝑁0 cos( 𝜔𝑡 + ∠𝑇 𝑗𝜔 )

We require 𝑇 𝑗𝜔 ≪ 1 for good noise rejection at 𝜔.
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Requirements: Control Effort

Goal: The control u should remain within allowable limits.

The transfer function from r to u is K(s)S(s).

Consider a sinusoidal reference 𝑟 𝑡 = 𝑅0cos(𝜔𝑡). Then:
𝑢 𝑡 → 𝐾 𝑗𝜔 𝑆 𝑗𝜔 𝑅0 cos( 𝜔𝑡 + ∠𝐾 𝑗𝜔 𝑆 𝑗𝜔 )

To remain within saturation limits 𝑢 𝑡 ≤ 𝑢𝑚𝑎𝑥,
𝐾 𝑗𝜔 𝑆 𝑗𝜔 𝑅0 ≤ 𝑢𝑚𝑎𝑥 ⇒ 𝐾 𝑗𝜔 𝑆 𝑗𝜔 ≤ 𝑢𝑚𝑎𝑥

𝑅0

We also need to ensure that n does not cause large u.
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Design Requirements: S(s) vs. T(s)

Reference tracking and disturbance rejection:  𝑆 𝑗𝜔 ≪ 1

Noise rejection:  𝑇 𝑗𝜔 ≪ 1

However S(s)+T(s)=1 so we can’t have both 𝑺 𝒋𝝎 ≪ 𝟏
and 𝑻 𝒋𝝎 ≪ 𝟏 at the same frequency. This conflict is 
resolved by splitting the requirements by frequency:

𝑆 𝑗𝜔 ≪ 1 at low frequencies and 𝑇 𝑗𝜔 ≪ 1 at high 
frequencies.
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Basic Frequency Domain Trade-offs

Plant:

Controller:

Loop:   

Sensitivity:

Complementary Sensitivity:

9

Bode magnitude 
plots for Kp = 1.



Loop bandwidth:

Closed-loop time constant:

Higher bandwidths correspond 
to faster response.

Basic Frequency Domain Trade-offs

Low Frequencies: Good reference tracking and disturbance 
rejection but poor noise rejection.

High Frequencies: Good noise rejection but poor reference 
tracking and disturbance rejection.

Middle Frequencies: Loop bandwidth 𝜔𝐿 is where 𝐿 𝑗𝜔𝐿 = 1.
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Basic Frequency Domain Trade-offs

Low Frequencies: Good reference tracking and disturbance 
rejection but poor noise rejection.

High Frequencies: Good noise rejection but poor reference 
tracking and disturbance rejection.

Middle Frequencies: Loop bandwidth 𝜔𝐿 is where 𝐿 𝑗𝜔𝐿 = 1.
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Kp = 1



Basic Frequency Domain Trade-offs

Low Frequencies: Good reference tracking and disturbance 
rejection but poor noise rejection.

High Frequencies: Good noise rejection but poor reference 
tracking and disturbance rejection.

Middle Frequencies: Loop bandwidth 𝜔𝐿 is where 𝐿 𝑗𝜔𝐿 = 1.
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Kp = 10



Control Effort

Plant:

Controller:

Closed-loop r to u:  𝐾 𝑠 𝑆 𝑠 =
𝐾𝑝𝑠

𝑠+𝐾𝑝
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ECE 486: Control Systems

Lecture 20B: Introduction to Loopshaping



Key Takeaways

Loopshaping is a design method that focuses on the loop L(s). 

We build the controller from components targeting low, middle, 
and high frequencies.

Low Frequencies: Good reference tracking / disturbance rejection.
𝑆 𝑗𝜔 ≪ 1 ⇔ 𝐿 𝑗𝜔 ≫ 1

High Frequencies: Good noise rejection.
𝑇 𝑗𝜔 ≪ 1 ⇔ 𝐿 𝑗𝜔 ≪ 1

Middle Frequencies (Crossover Region):

Speed of Response: Loop bandwidth 𝜔𝐿 such that 𝐿 𝑗𝜔𝐿 = 1

Stability/Robustness: Transition with a shallow slope.
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Speed of Response: Bandwidth

For first- and second-order systems we used settling time and/or 
rise time as measures of the speed of response.

For higher-order systems, an alternative frequency domain 
notion for speed of response is useful: bandwidth.

1. Loop Bandwidth, 𝝎𝑳: Smallest frequency with 𝐿 𝑗𝜔𝐿 = 1.

2. Sensitivity Bandwidth, 𝝎𝑺: Highest frequency such that

𝑆 𝑗𝜔 ≤ 1

√2
=−3𝑑𝐵 for all 𝜔 ≤ 𝜔𝑆

3. Complementary Sensitivity Bandwidth, 𝝎𝑻: Lowest 
frequency such that

𝑇 𝑗𝜔 ≤ 1

√2
=−3𝑑𝐵 for all 𝜔 ≥ 𝜔𝑇
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Speed of Response: Bandwidth

Example:  𝐺 𝑠 = 1

𝑠
and 𝐾 𝑠 = 12.5

Bandwidths: 𝜔𝐿 = 𝜔𝑇 = 𝜔𝑆 = 12.5𝑟𝑎𝑑
𝑠𝑒𝑐

Note that 𝑆 𝑠 = 𝑠

𝑠+12.5
⇒ Time Constant 𝜏 = 1

12.5
𝑠𝑒𝑐 = 1

𝜔𝐿
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Speed of Response: Bandwidth

Example:  𝐺 𝑠 = −0.5𝑠2+1250

𝑠3+47𝑠2+850𝑠−3000
and 𝐾 𝑠 = 10𝑠+30

𝑠

Bandwidths: 𝜔𝑆 = 5𝑟𝑎𝑑
𝑠𝑒𝑐
, 𝜔𝐿 = 12.5𝑟𝑎𝑑

𝑠𝑒𝑐
, 𝜔𝑇 = 28𝑟𝑎𝑑

𝑠𝑒𝑐

Settling Time is ≈ 0.6𝑠𝑒𝑐 = 3

𝜔𝑆
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Bode Gain-Phase Relation

Loopshaping focuses on |𝐿 𝑗𝜔 | with less emphasis on ∠𝐿 𝑗𝜔 . 

Fact: Assume L(s) has all poles and zeros in the LHP.  Then:

Comments:

1. The approximation is accurate if the slope is roughly constant 
for ω ∈ [𝜔0

10
, 10ω0 ].

2. The approximation arises from an exact formula by Bode.

3. The phase change from 𝜔 = 0 to 𝜔0 is ±90𝑜 for every 

± 20 𝑑𝐵

𝑑𝑒𝑐𝑎𝑑𝑒
of slope.
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Bode Gain-Phase Relation

Loopshaping focuses on |𝐿 𝑗𝜔 | with less emphasis on ∠𝐿 𝑗𝜔 . 

Fact: Assume L(s) has all poles and zeros in the LHP.  Then:
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Requirements on the Loop L(s)

Recall 𝐿 𝑠 = 𝐺 𝑠 𝐾 𝑠 , 𝑆 𝑠 = 1

1+𝐿(𝑠)
, 𝑇 𝑠 = 𝐿(𝑠)

1+𝐿(𝑠)

Low Frequencies: 𝑆 𝑗𝜔 ≪ 1 ⇔ 𝐿 𝑗𝜔 ≫ 1

Note: 𝐿 𝑗𝜔 ≫ 1 ⇔ 𝐾(𝑗𝜔)𝑆 𝑗𝜔 ≈ 1

|𝐺 𝑗𝜔 |

High Frequencies: 𝑇 𝑗𝜔 ≪ 1 ⇔ 𝐿 𝑗𝜔 ≪ 1
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Requirements on the Loop L(s)

Middle Frequencies (Crossover Region): The slope near 𝜔𝐿

should not be too steep to ensure stability and robustness. 

-A slope of ≈−40𝑑𝐵
𝑑𝑒𝑐

means ∠𝐿 𝑗𝜔 ≈ −180𝑜 and closed-loop 

will be unstable and/or have poor phase margins.

-Slope should not be steeper than ≈−30𝑑𝐵
𝑑𝑒𝑐

to ensure 45o margin.
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ECE 486: Control Systems

Lecture 20C: Controller Components For Loopshaping



Key Takeaways

Loopshaping builds controllers from the following components:

A) Proportional Gain: A gain (> 1) increases the loop magnitude at all 
frequencies. This increases bandwidth and reduces steady state error 
but degrades noise rejection.

B) Integral Boost: Increases the low frequency gain but leaves the 
high frequencies unchanged. This gives zero steady state error but 
has negligible effect on bandwidth and noise sensitivity.

C) High Frequency Roll-off: Decreases the high frequency gain but 
leaves the low frequencies unchanged. This improves noise rejection 
but has negligible effect on bandwidth and steady-state error.

D) Lead: Makes the slope more shallow near the crossover 
frequency. This improves robustness but it slightly degrades both the 
low frequency tracking and high frequency noise rejection.
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Example

Plant:

Control:  
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Example

Plant:

Control:  
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Controller Components

5

Proportional 
Gain

Integral
Boost

LeadRoll-off



Proportional Gain

Proportional Gain:  𝐾(𝑠) = 𝐾𝑝

Recall the following fact for Bode magnitudes in dB:

6

Properties:

-If Kp>1 then gain shifts 
entire loop mag. up. 

-If Kp<1 then gain shifts 
entire loop mag. down.

Proportional gain is used 
to set the loop bandwidth 
(crossover frequency).



Effect of Proportional Gain

Plant:

Control:  
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-Corresponds to PI control:

Integral boost is used to 
increase low frequency 
gain and ensure zero 
steady-state error.

Integral Boost

Integral Boost:  𝐾(𝑠) = 𝑠+ഥ𝜔

𝑠

Properties:

-Corner frequency ഥ𝜔, high frequency gain |𝐾 𝑗𝜔 | = 1, and 

low frequency slope of −20𝑑𝐵

𝑑𝑒𝑐
.
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Effect of Integral Boost

Plant:

Control:

Integral control ensures zero error in steady-state  
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High Frequency Roll-off

Roll-off:  𝐾(𝑠) = ഥ𝜔

𝑠+ഥ𝜔

Properties:

-Corner frequency ഥ𝜔, low frequency gain |𝐾(𝑗𝜔)| = 1, and 

high frequency slope of −20𝑑𝐵

𝑑𝑒𝑐
.
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-Corresponds to the ODE:

Roll-off is used to decrease 
high frequency gain and 
attenuate sensor noise.



Effect of Roll-off

Plant:

Control:
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Lead

Lead:  𝐾(𝑠) = 𝛽𝑠+ഥ𝜔

𝑠+𝛽ഥ𝜔

Properties:

-Zero at −ഥ𝜔

𝛽
and pole at −𝛽ഥ𝜔, 

-Low frequency gain 1
𝛽

and high frequency gain 𝛽

-Positive slope at ഥ𝜔
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Lead is used to make the 
slope shallower and hence 
ensure stability and 
robustness.



Effect of Lead

Plant:

Control:
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ECE 486: Control Systems

Lecture 20D: Loopshaping Design Process



Key Takeaways

The basic steps of the loopshaping process are:

1) Use a proportional gain to set the desired crossover frequency. 
This sets the bandwidth / speed of response.

2) Use an integral boost to increase |𝐿 𝑗𝜔 | at low frequencies. 
This improves the reference tracking and disturbance rejection.

3) Use a roll-off to reduce |𝐿 𝑗𝜔 | at high frequencies. This 
improves the noise rejection.

4) Add lead control (if needed) to modify the slope of |𝐿 𝑗𝜔 | near 
the crossover. This is used for closed-loop stability and robustness.

This approach can be used on higher-order plants using controllers 
that are, in general, more complex than a PID controller.
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Basic Design Process

Key design parameter: Desired loop crossover 𝜔𝑐

1. Proportional Gain: Select 𝐾𝑝 = ±
1

|𝐺 𝑗𝜔𝑐 |

Loop 𝐿1 = 𝐺 𝐾𝑝 has the desired crossover, 𝐿 𝑗𝜔𝑐 = 1.

2. Integral Boost: Select 𝐾𝑖 𝑠 =
𝑠+𝜔𝑖

𝑠
with 𝜔𝑖 ≤ 𝜔𝑐

Loop 𝐿2 = 𝐺 𝐾𝑝 𝐾𝑖 has improved low frequency tracking. 

Good initial choice 𝜔𝑖 = 𝜔𝑐/3 so that |𝐾𝑖 𝑗𝜔 | ≈ 1 for 𝜔 ≥ 𝜔𝑐 .

3. Roll-off: Select 𝐾𝑟 𝑠 =
𝜔𝑟

𝑠+𝜔𝑟
with 𝜔𝑟 ≥ 𝜔𝑐

Loop 𝐿3 = 𝐺 𝐾𝑝 𝐾𝑖𝐾𝑟 has improved noise rejection / robustness. 

Good initial choice 𝜔𝑟 = 3𝜔𝑐 so that |𝐾𝑟 𝑗𝜔 | ≈ 1 for 𝜔 ≤ 𝜔𝑐 .

4. Lead (If needed): Select 𝐾𝑙 𝑠 =
𝛽𝑠+𝜔𝑐

𝑠+𝛽𝜔𝑐
with 𝛽 ≈ 3 − 10

Loop 𝐿4 = 𝐺 𝐾𝑝 𝐾𝑖𝐾𝑟𝐾𝑙 has improved stability margins
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Example 1: First-Order System

Design a loopshaping controller for 𝐺 𝑠 = −
0.25

𝑠+0.5

Desired crossover at 𝜔𝑐 = 1.5 𝑟𝑎𝑑/𝑠𝑒𝑐
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Step 1: Proportional Gain

Plant 𝐺 𝑠 = −
0.25

𝑠+0.5
and desired crossover at 𝜔𝑐 = 1.5

𝑟𝑎𝑑

𝑠𝑒𝑐

𝐾𝑝 = −
1

𝐺 𝑗𝜔𝑐
= −6.32 (Note Kp<0 because G(0)<0).

L1 = G Kp
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Step 2: Integral Boost

Plant 𝐺 𝑠 = −
0.25

𝑠+0.5
and desired crossover at 𝜔𝑐 = 1.5

𝑟𝑎𝑑

𝑠𝑒𝑐

𝐾𝑖 =
𝑠+𝜔𝑖

𝑠
with 𝜔𝑖 =

𝜔𝑐

3
= 0.5

𝑟𝑎𝑑

𝑠𝑒𝑐

L2 = G Kp Ki
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Step 3: Roll-off

Plant 𝐺 𝑠 = −
0.25

𝑠+0.5
and desired crossover at 𝜔𝑐 = 1.5

𝑟𝑎𝑑

𝑠𝑒𝑐

𝐾𝑟 =
𝜔𝑟

𝑠+𝜔𝑟
with 𝜔𝑟 = 3𝜔𝑐 = 4.5

𝑟𝑎𝑑

𝑠𝑒𝑐

L3 = G Kp Ki Kr
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Step 4: Lead

Plant 𝐺 𝑠 = −
0.25

𝑠+0.5
and desired crossover at 𝜔𝑐 = 1.5

𝑟𝑎𝑑

𝑠𝑒𝑐

Loop L3 = G Kp Ki Kr has a “shallow” slope near crossover. 

The closed-loop is stable with [0,∞) gain margins and ±72𝑜

phase margins.

No lead control is required.

Final Controller: 
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>> G = -tf(0.25,[1 0.5]);                   % Plant

>> wc = 1.5;                                       % Desired crossover, rad/sec

>> Kp = -1/abs(evalfr(G, 1j*wc));   % Proportional Gain

>> wi = wc/3;                                    % Boost frequency, rad/sec

>> Ki = tf([1 wi],[1 0]);                     % Integral Boost

>> wr = 3*wc;                                   % Roll-off frequency, rad/sec

>> Kr = tf(wr,[1 wr]);                        % Roll-off

>> K = Kp*Ki*Kr;                               % Final Controller

>> L3 = G*K;                                      % Final loop

>> S = feedback(1,L3);                    % Closed-loop sensitivity

>> isstable(S)                                   % Verify closed-loop stability

>> allmargin(L3)                              % Classical margins

Example 1: Matlab Code



Example 2: Higher-Order System

Design a loopshaping controller for 

𝐺 𝑠 =
4

𝑠2
400

𝑠2 + 0.08𝑠 + 400

15

𝑠 + 15

Desired crossover at 𝜔𝑐 = 2.0 𝑟𝑎𝑑/𝑠𝑒𝑐

Step 1) Gain: Select 𝐾𝑝 =
1

𝐺 𝑗𝜔𝑐
≈ 1

Step 2) Boost: 𝐾𝑖 =
𝑠+𝜔𝑖

𝑠

with 𝜔𝑖 =
𝜔𝑐

3

Step 3) Rolloff: 𝐾𝑟 =
𝜔𝑟

𝑠+𝜔𝑟

with 𝜔𝑟 = 3𝜔𝑐
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Example 2: Higher-Order System

Design a loopshaping controller for 

𝐺 𝑠 =
4

𝑠2
400

𝑠2 + 0.08𝑠 + 400

15

𝑠 + 15

Desired crossover at 𝜔𝑐 = 2.0 𝑟𝑎𝑑/𝑠𝑒𝑐

Step 1) Gain: Select 𝐾𝑝 =
1

𝐺 𝑗𝜔𝑐
≈ 1

Step 2) Boost: 𝐾𝑖 =
𝑠+𝜔𝑖

𝑠

with 𝜔𝑖 =
𝜔𝑐

5

Step 3) Rolloff: 𝐾𝑟 =
𝜔𝑟

𝑠+𝜔𝑟

with 𝜔𝑟 = 5𝜔𝑐
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Loop L3 = G Kp Ki Kr has a “steep” slope near crossover. 

Closed-loop is unstable with L3 so lead control is needed.

𝐾𝑙 𝑠 =
𝛽𝑠+𝜔𝑐

𝑠+𝛽𝜔𝑐
with 𝛽 = 8

L4 = G Kp Ki Kr Kl → Closed-loop is stable 45o of phase margin.

Step 4: Lead



>> G1 = tf(1,[1 0 0]);

>> H = 4*tf(400,[1 2*0.02*20 400])*tf(15,[1 15]);

>> G = G1*H;                                                       % Plant

>> wc = 2.0;                                                         % Desired crossover, rad/sec

>> Kp = 1/abs(evalfr(G, 1j*wc));                           % Proportional Gain

>> wi = wc/5;                                                           % Boost frequency, rad/sec

>> Ki = tf([1 wi],[1 0]);                                            % Integral Boost

>> wr = 5*wc;                                                          % Roll-off frequency, rad/sec

>> Kr = tf(wr,[1 wr]);                                               % Roll-off

>> wl = wc;                                                               % Lead frequency, rad/sec

>> beta = 8;                                                              % Lead parameter

>> Kl = tf([beta wl],[1 beta*wl]);                          % Lead

>> K = Kp*Ki*Kr*Kl;                                                % Final Controller

>> L4 = G*K;                                                            % Final loop

>> S = feedback(1,L4);                                         % Closed-loop sensitivity

>> isstable(S)                                                        % Verify closed-loop stability

>> allmargin(L4)                                                   % Classical margins

Example 2: Matlab Code



PID with approximate derivative:

Loopshaping with proportional, integral boost, and lead:

These are different parameterizations for the same class of controllers.  

Loopshaping can be viewed as a generalization of PID that enables

• Additional controller components (rolloff, notches, etc)

• Closer connection to frequency-domain trade-offs

• Extensions to multivariable systems. 

PID vs. Loopshaping



ECE 486: Control Systems

Lecture 20E: Loopshaping Design Theorems



Key Takeaways

This lecture presents two important “theorems” regarding the 
loopshaping design process. 

Under mild conditions, the loopshaping design process will yield a 
stable closed-loop with good stability margins.

2



Basic Assumptions on L(s)=G(s)K(s)

1. L(s) has all poles and zeros in the LHP.

2. L(0)>0

3. One crossover 𝜔𝑐
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Basic Assumptions on L(s)=G(s)K(s)

1. L(s) has all poles and zeros in the LHP.

2. L(0)>0

3. One crossover 𝜔𝑐

4. Shallow slope (≥ −30𝑑𝐵

𝑑𝑒𝑐
) for one decade around 𝜔𝑐
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Basic Assumptions on L(s)=G(s)K(s)

1. L(s) has all poles and zeros in the LHP.

2. L(0)>0

3. One crossover 𝜔𝑐

4. Shallow slope (≥ −30𝑑𝐵

𝑑𝑒𝑐
) for one decade around 𝜔𝑐

5.  𝐿 𝑗𝜔 ≥ 2 for 𝜔 ≤ 𝜔1
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Basic Assumptions on L(s)=G(s)K(s)

1. L(s) has all poles and zeros in the LHP.

2. L(0)>0

3. One crossover 𝜔𝑐

4. Shallow slope (≥ −30𝑑𝐵

𝑑𝑒𝑐
) for one decade around 𝜔𝑐

5. 𝐿 𝑗𝜔 ≥ 2 for 𝜔 ≤ 𝜔1

6. 𝐿 𝑗𝜔 ≤
1

2
for 𝜔 ≥ 𝜔2
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Loopshaping Design Theorem

1. L(s) has all poles and zeros in the LHP.

2. L(0)>0

3. One crossover 𝜔𝑐

4. Shallow slope (≥ −30𝑑𝐵

𝑑𝑒𝑐
) for one decade around 𝜔𝑐

5. 𝐿 𝑗𝜔 ≥ 2 for 𝜔 ≤ 𝜔1

6. 𝐿 𝑗𝜔 ≤
1

2
for 𝜔 ≥ 𝜔2
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If L(s) satisfies 1-6 then 
the closed-loop is stable 
with approximate gain, 
phase, and disk margins 
≥ ±6dB, ≥ ±45o, and    
dmin ≥ 0.5



Loopshaping Design Theorem With Integrators

1. L(s)= 1

𝑠𝑘
𝐻(𝑠) where H(s) has all poles and zeros in the LHP.

2. H(0)>0

3. One crossover 𝜔𝑐

4. Shallow slope (≥ −30𝑑𝐵

𝑑𝑒𝑐
) for one decade around 𝜔𝑐

5. 𝐿 𝑗𝜔 ≥ 2 for 𝜔 ≤ 𝜔1

6. 𝐿 𝑗𝜔 ≤
1

2
for 𝜔 ≥ 𝜔2
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If L(s) satisfies 1-6 then 
the closed-loop is stable 
with approximate gain, 
phase, and disk margins 
≥ ±6dB, ≥ ±45o, and    
dmin ≥ 0.5
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