
ECE 486: Control Systems

I Lecture 17C: lead/lag control

Goal: introduce the use of lead and lag dynamic compensators

Reading: FPE, Chapter 5



Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller KDs by

KD
ps

s+ p
−→ KDs as p→∞

— here, −p is the pole of the controller.

So, we replace the PD controller KP +KDs by

K(s) = KP +KD
ps
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Closed-loop poles: 1 +

(
KP +KD
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s+ p

)
G(s) = 0



Lead & Lag Compensators
Consider a general controller of the form

K
s+ z

s+ p
— K, z, p > 0 are design parameters

Depending on the relative values of z and p, we call it:

I a lead compensator when z < p

I a lag compensator when z > p

Why the name “lead/lag?” — think frequency response

∠
jω + z

jω + p
= ∠(jω + z)− ∠(jω + p) = ψ − φ

I if z < p, then ψ − φ > 0
(phase lead)

I if z > p, then ψ − φ < 0
(phase lag) z p

!
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Summary on Design Trade-offs

Some deign trade-offs for the lead control:

I p large — good damping, but bad noise suppression (too
close to PD)

I p small — noise suppression is better, but worse tracking
performance

I intermediate values of p — how to set the control gains?

We will use the Bode plot to do the design.



Lead Compensation: Bode Plot

KD(s) = K
s+ z

s+ p
, p� z

In Bode form:

KD(s) =
Kz

(
s
z + 1

)
p
(
s
p + 1

)
or, absorbing z/p into the overall gain, we have

KD(s) =
K

(
s
z + 1

)(
s
p + 1

)
Break-points:

I Type 1 zero with break-point at ω = z (comes first, z � p)

I Type 1 pole with break-point at ω = p



Lead Compensation: Bode Plot

KD(s) =
K

(
s
z + 1

)(
s
p + 1

)
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I magnitude levels off at
high frequencies =⇒ better
noise suppression

I adds phase, hence the term
“phase lead”



Lead Compensation and Phase Margin

KD(s) =
K

(
s
z + 1

)(
s
p + 1

)
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For best effect on PM, ωc

should be halfway between z
and p (on log scale):

logωc =
log z + log p

2
or ωc =

√
z · p

— geometric mean of z and p

Trade-offs: large p− z means

I large PM (closer to 90◦)

I but also bigger M at
higher frequencies (worse
noise suppression)



Back to Our Example: G(s) =
1

s2

Objectives (same as before):

I stability

I good damping

I ωBW close to 0.5

KG(s) =
K

s2
(w/o lead):
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after adding lead:

0.001 0.01 0.1 1 10

-60.

-40.

-20.

0.

20.

40.

60.

80.
slope 
= -2

slope 
= -1

slope 
=- 2

!c should be here

— adding lead will increase ωc!!



Back to Our Example: G(s) =
1

s2
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After adding lead with
K = 1/4, what do we see?

I adding lead increases ωc

I =⇒ PM < 90◦

I =⇒ ωBW may be > ωc

To be on the safe side, we
choose a new value of K so that

ωc =
ωBW

2

(b/c generally ωc ≤ ωBW ≤ 2ωc)

Thus, we want

ωc = 0.25 =⇒ K =
1
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Back to Our Example: G(s) =
1

s2
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Next, we pick z and p so that
ωc is approximately their
geometric mean:

e.g., z = 0.1, p = 2
√
z · p =

√
0.2 ≈ 0.447

Resulting lead controller:

KD(s) =
1

16
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(may still need to be refined
using Matlab)



Lead Controller Design Using Frequency Response
General Procedure

1. Choose K to get desired bandwidth spec w/o lead

2. Choose lead zero and pole to get desired PM
I in general, we should first check PM with the K from 1,

w/o lead, to see how much more PM we need

3. Check design and iterate until specs are met.

This is an intuitive procedure, but it’s not very precise, requires
trial & error.


