ECE 486: Control Systems

> Lecture 17B: Bode’s Gain-Phase Relationship

Goal: understand Bode’s gain-phase relationship and its
importance for control design

Reading: FPE, Chapter 6



Review: Phase Margin for 2nd-Order System
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Conclusions:
larger PM <= better damping
(open-loop quantity) (closed-loop characteristic)

_ ¢
Thus, the overshoot M,, = exp < m) and resonant peak
— 1 I
M, = vie 1 are both related to PM through (!



Bode’s Gain-Phase Relationship
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Assuming that G(s) is minimum-phase (i.e., has no RHP
zeros), we derived the following for the Bode plot of KG(s):

|

H low freq. ‘ real zero/pole ‘ complex zero/pole ‘

mag. slope

n

up/down by 1

up/down by 2

phase

n x 90°

up/down by 90°

up/down by 180°

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase ~ Magnitude Slope x 90°



Bode’s Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

Phase ~ Magnitude Slope x 90°

This suggests the following rule of thumb:

» M has slope —2 at w,
= ¢(w.) = —180°

want slope | = bad (no PM)

e » M has slope —1 at w,

= ¢(we) = —90°

= good (PM = 90°)

J

We

— this is an important design guideline!!

(Similar considerations apply when M-plot has positive slope —
depends on the t.f.)



Gain-Phase Relationship & Bandwidth
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M-plot for open-loop t.f. KG:
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= KG(jw:) = —J

£G(jwe) = —90°

T(jwe)

T (jwe)l

Note: |KG(jw)| — oo asw — 0

> If PM = 90°, then w. = wpw
> If PM < 90°, then w. < wpw < 2w, (see FPE)

T(0)] =

Closed-loop t.1.:
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— w. = wpw (bandwidth)




Bandwidth
For our prototype 2nd-order system:
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Bandwidth

Here is a typical frequency response magnitude plot:

M(w)

w, — resonant frequency

M, — resonant peak

wpw — bandwidth



Bandwidth
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We can get the following formulas using calculus:

Wy = wpy/1 — 2¢2
1
e

wew = wa /(1= 22) + VI — 207 + 1
=1 for ¢=1/V2

— so0, if we know w,., M., wgw, we can determine w,,,( and
hence the time-domain specs (t,, M, ts)

1 1
(valid for ¢ < ﬁ; for ¢ > 7 wy =0)




Bandwidth

All information about time response is also encoded in
frequency response!!

small M, <— better damping
large wpw «— large w,, <— smaller ¢,



Control Design Using Frequency Response
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Bode’s Gain-Phase Relationship suggests that we can shape the
time response of the closed-loop system by choosing K (or,
more generally, a dynamic controller K D(s)) to tune the Phase
Margin.

In particular, from the quantitative Gain-Phase Relationship,
Magnitude slope(w.) = —1 = Phase(w,) ~ —90°

— which gives us PM of 90° and consequently good damping.



Example

R%O—» KD(s) —| G(s) v
1 .
Let G(s) = — (double integrator)
s

Objective: design a controller K D(s) (K = scalar gain) to give
> stability
» good damping (will make this more precise in a bit)

» wpw ~ 0.5 (always a closed-loop characteristic)

Strategy:

» from Bode’s Gain-Phase Relationship, we want magnitude
slope = —1 at w, = PM = 90° = good damping;

» if PM = 90°, then w. = wpw =— want w, ~ 0.5



Design, First Attempt

R{?—» KD(s) —| c(s) y
1
G(s) = =

Let’s try proportional feedback:

D(s)=1 = KD(s)G(s) = KG(s) =

This is not a good idea:
slope = —2 everywhere,
so no PM.

We already know that
i 1 P-gain alone won'’t do
K B Y the job:

slope = -2 everywhere

K + s* = 0 (imag. poles)




Design, Second Attempt

R—JEQ—» KD(s) —| G(s) Y

Let’s try proportional-derivative feedback:

KD(s)=K(ts+1), where K = Kp, K7 = Kp

K(rs+1
Open-loop transfer function: KD(s)G(s) = #
s
Bode plot interpretation: PD controller introduces a Type 2
term in the numerator, which pushes the slope up by 1

— this has the effect of pushing the M-slope of K D(s)G(s)
from —2 to —1 past the break-point (w = 1/7).



Design, Second Attempt (PD-Control)

R0 KD(s) [ 6

T

Open-loop transfer function: KD(s)G(s)

K(rts+1)
2

S

For the G-P relationship
to be valid, choose the
break-point several times
smaller than desired w,:
= let’s take 7 = 10

We
= —-=01=—
5
Open-loop t.f.:
_ K(10s+1)



Design, Second Attempt (PD-Control)

R!L;Q—» KD(s) |—| G(s) y

f

Open-loop transfer function: KD(s)G(s) =

K(10s + 1)

52

> Want w. ~ 0.5

» This means that

M(j0.5) =1

|K D(50.5)G(5.05)]
B K55 + 1|
N 0.52
=4Kv26 ~ 20K

1
— K

T2



PD Control Design: Evaluation
R—JCQ—» KD(s) |—| G(s) y

10s +1 2
Initial design: K D(s) = 82(')* s

What have we accomplished?
» PM ~ 90° at w. = 0.5

> still need to check in Matlab and iterate if necessary

Trade-offs:

» want wpw to be large enough for fast response (larger
wpw — larger w, — smaller ¢,.), but not too large to
avoid noise amplification at high frequencies

» PD control increases slope —» increases w. — increases
wpw — faster response

» usual complaint: D-gain is not physically realizable, so let’s
try lead compensation



