ECE 486: Control Systems

Lecture 10A: Dominant Pole Approximation




Dominant-Pole Approximation

The dominant poles of a higher-order system are the slowest
poles (largest time constant).

We can often approximate a higher-order system by a:
1. First-order approximation if the dominant pole is real

2. Second-order approximation if the dominant pole(s) are
a complex pair.

The approximation is accurate if the dominant pole(s) are
significantly slower than the remaining poles.

(Dominant pole time constant is 5x larger than other poles)



Problem 1

For each system:

* Construct a first-order or second-order approximation from
the dominant pole.

* Do you expect the dominant pole approximation to be
accurate?

For system A: Roughly sketch the unit step response of the
dominant pole approximation. Note the final time, settling
time, and overshoot (if underdamped).
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Solution 1A

e Construct a first-order or second-order approximation from the dominant pole.
* Do you expect the dominant pole approximation to be accurate?

* Roughly sketch the unit step response of the dominant pole approximation.
Note the final time, settling time, and overshoot (if underdamped).
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Solution 1B

e Construct a first-order or second-order approximation from the dominant pole.
* Do you expect the dominant pole approximation to be accurate?
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ECE 486: Control Systems

Lecture 10B: Integrator Anti-windup




Key Takeaways

This lecture describes impact of actuator saturation and rate
limits. These limits:

* Cause slower speed of response and

 Can lead to overshoot and oscillations if the controller does
not properly account for the limits.

Anti-windup is one method to reduce the effect of saturation.
* |t will prevent overshoot and oscillations.

 However, it does not change the slower speed of response
which is a physical limit of the actuators.




Problem 2

Consider the following plant and Pl controller:
g(t) +Ay(t) = 2u(t)  ut) =5e(t) +20 fe(r) dr
A) What is the ODE that models the closed-loop from r to y?

B) The actuator saturates at u € [—3,+3]. Do you expect saturation
to cause any issues if the reference commands are in the range r €
|—1, +1]? If yes, then how might you alleviate the issue?

C) Suppose instead that the references are in the range r €
|—10,+10]. Can any controller (not just the Pl controller above)
achieve good reference tracking with this actuator? If not, then how
would you re-select the actuator?



Solution 2A

Consider the following plant and Pl controller:

() + dy(t) = QU(H@ = 5e(t) + 20 fy e(r) dr
A) What is the ODE that models theclosed-loop from r to y?
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Solution 2B

Consider the following plant and Pl controller: -

y(t) + 4y(t) = 2u(t) u(t) = @ Qo/frf e@

B) The actuator saturates at u € [—3, +3]. Do you expect saturation

to cause any issues if the reference commands are in the range r €
|—1,+1]? If yes, then how might you alleviate the issue?
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Solution 2C

and PI controller:
l
/)u(t) =5e(t) +20 , e(T) dr

erences are in the range r €

Consider the
y(t) + 4y(t) = 2u(t)
C) SupBose instead that the

|—10,+10]. Can any controller (not just the Pl controller above)
achieve good reference tracking with this actuator? If not, then how

would you re-select the actuator? wec-3 32/\i
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ECE 486: Control Systems

Lecture 10C: Control Law Implementation




Key Takeaways

It is common to implement controllers on a microprocessor.

This lecture discusses some of the details associated with this
implementation:

 Sample a measurement at specific (discrete) time invervals
* Update the control input u at each sample time.
* Hold the control input u constant until the next update.

The update equation is chosen to approximate the properties of
the designed (ODE) controller. The update equation can be
implemented on a microprocessor with a few lines of code.




Problem 3

Consider the following plant and Pl controller:

2y(t) + 6y(t) = 8u(t) u(t) = 2.5¢e(t) + 9f0 T)dT
A) What sampling time At would you recommend for a discrete-
time implementation?

B) The value of u(t) at t=At is:
u(At) = 2.5e(At) + 9f T)dT &
Approximate u; = u(At) interms e¢y: = e(O) and e1: = e(At).

C) The computations in the discrete-time update are not
instantaneous and require some time. How can this be modeled?



Solution 3A
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Solution 3B

20() + 6y (t) = Su(t) [u(t) = 2.5e(t) +9 J, e(r) d7)
B) The value of u(t) at t=Atis:

u(At) = 2.5e(At) +9 [ e(r) dr
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Approximate U = u(At) interms eg: = e(0) and e;: = e(At).
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Solution 3C

20(t) + 6y(t) = 8u(t) u(t) =2.5e(t) +9 [ e(r) dr
C) The computations in the discrete-time update are not
instantaneous and require some time. How can this be modeled?
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