Plan of the Lecture

► Review: observability; Luenberger observer and state estimation error.

► Today’s topic: joint observer and controller design: dynamic output feedback.

Goal: learn how to design an observer and a controller to achieve accurate closed-loop pole placement.

Reading: FPE, Chapter 7
Is Full State Feedback Always Available?

In a typical system, measurements are provided by sensors:

\[\frac{d}{dt} x = A x + B u \]
\[y = x \]

Full state feedback \(u = -Kx \) is **not implementable**!!

In that case, an observer is used to estimate the state \(x \):

\[y = C \hat{x} \]

\(\hat{x} \) is an estimate of \(x \).

If \(C(A, B) \) is full rank, then we can do ordinary pole placement with full feedback.
State Estimation Using an Observer

If the system is observable, the state estimate \(\hat{x} \) is asymptotically accurate:

\[
\|\hat{x}(t) - x(t)\| = \sqrt{\sum_{i=1}^{n} (\hat{x}_i(t) - x_i(t))^2} \xrightarrow{t \to \infty} 0
\]

If we are successful, then we can try estimated state feedback:

\[
u = -K\hat{x}
\]

Can we close the loop using \(\hat{x} \) instead of \(x \)?
Observability

Consider a single-output system \((y \in \mathbb{R})\):

\[\dot{x} = Ax + Bu, \quad y = Cx \quad x \in \mathbb{R}^n \]

The Observability Matrix is defined as

\[\mathcal{O}(A, C) =
\begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n-1}
\end{bmatrix} \]

We say that the above system is observable if its observability matrix \(\mathcal{O}(A, C)\) is invertible.

(This definition is only true for the single-output case; the multiple-output case involves the rank of \(\mathcal{O}(A, C)\).)
Observer Canonical Form

A single-output state-space model

\[\dot{x} = Ax + Bu, \quad y = Cx \]

is said to be in Observer Canonical Form (OCF) if the matrices

\[A, C \]

are of the form

\[
A = \begin{pmatrix}
0 & 0 & \ldots & 0 & 0 & * \\
1 & 0 & \ldots & 0 & 0 & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 & * \\
0 & 0 & \ldots & 0 & 1 & * \\
\end{pmatrix}, \quad C = (0 \ 0 \ \ldots \ 0 \ 1)
\]

Fact: A system in OCF is always observable!!

(The proof of this for \(n > 2 \) uses the Jordan canonical form, we will not worry about this.)
The Luenberger Observer

System: \[
\dot{x} = Ax + Bu \\
y = Cx
\]

Observer: \[
\dot{\hat{x}} = (A - LC)\hat{x} + Ly + Bu
\]

What happens to state estimation error \(e = x - \hat{x} \) as \(t \to \infty \)?

\[
\dot{e} = (A - LC)e
\]

Does \(e(t) \) converge to zero in some sense?
The Luenberger Observer

System:
\[\dot{x} = Ax \]
\[y = Cx \]

Observer:
\[\dot{\hat{x}} = (A - LC)\hat{x} + Ly \]

Error:
\[\dot{e} = (A - LC)e \]

Recall our assumption that \(A - LC \) is Hurwitz (all eigenvalues are in LHP). This implies that

\[\|x(t) - \hat{x}(t)\|^2 = \|e(t)\|^2 = \sum_{i=1}^{n} |e_i(t)|^2 \xrightarrow{t \to \infty} 0 \]

at an exponential rate, determined by the eigenvalues of \(A - LC \).

For fast convergence, want eigenvalues of \(A - LC \) far into LHP!!
Observability and Estimation Error

Fact: If the system
\[\dot{x} = Ax, \quad y = Cx \]
is observable, then we can arbitrarily assign eigenvalues of \(A - LC \) by a suitable choice of the output injection matrix \(L \).

This is similar to the fact that controllability implies arbitrary closed-loop pole placement by state feedback.

In fact, these two facts are closely related because CCF is dual to OCF.
Combining Full-State Feedback with an Observer

- So far, we have focused on autonomous systems \((u = 0)\).
- What about nonzero inputs?

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx
\end{align*}
\]

— assume \((A, B)\) is controllable and \((A, C)\) is observable.

- Today, we will learn how to use an observer together with estimated state feedback to (approximately) place closed-loop poles.

\[u = -K\hat{x}\]
Combining Full-State Feedback with an Observer

Consider

\[\dot{x} = Ax + Bu \]

\[y = Cx \]

where \((A, B)\) is controllable and \((A, C)\) is observable.

We know how to find \(K\), such that \(A - BK\) has desired eigenvalues (controller poles).

Since we do not have access to \(x\), we must design an observer. But this time, we need a slight modification because of the \(Bu\) term.
Observer in the Presence of Control Input

- Let’s see what goes wrong when we use the old approach:

\[
\dot{\hat{x}} = (A - LC)\hat{x} + Ly
\]

- For the estimation error \(e = x - \hat{x} \), we have

\[
\dot{e} = \dot{x} - \dot{\hat{x}}
= Ax + Bu - [(A - LC)\hat{x} + LCx]
= (A - LC)e + Bu
\]

- \textbf{Idea:} since \(u \) is a signal we can access, let’s use it as an input to the observer to cancel the \(Bu \) term from \(\dot{x} \).

- \textbf{Modified observer:}

\[
\begin{align*}
\dot{\hat{x}} &= (A - LC)\hat{x} + Ly + Bu \\
\dot{e} &= \dot{x} - \dot{\hat{x}} \\
&= Ax + Bu - [(A - LC)\hat{x} + LCx + Bu] \\
&= (A - LC)e
\end{align*}
\]

regardless of \(u \)
Observer and Controller

System: \[\dot{x} = Ax + Bu \]
\[y = Cx \]

Observer: \[\hat{x} = (A - LC)\hat{x} + Ly + Bu \]

Error: \[\dot{e} = (A - LC)e \]

- By observability, we can arbitrarily assign \(\text{eig}(A - LC) \); these should be farther into LHP than desired controller poles.

Controller: \[u = -K\hat{x} \quad \text{(estimated state feedback)} \]

- By controllability, we can arbitrarily assign \(\text{eig}(A - BK) \).
Observer and Controller

System:
\[\dot{x} = Ax + Bu \]
\[y = Cx \]

Observer:
\[\dot{\hat{x}} = (A - LC)\hat{x} + Ly + Bu \]

Controller:
\[u = -K\hat{x} \]

The overall observer-controller system is:
\[\dot{\hat{x}} = (A - LC)\hat{x} + Ly + B(-K\hat{x}) = u \]
\[u = -(A - LC - BK)\hat{x} + Ly \]

This is a dynamical system with input \(y \) and output \(u \).
Dynamic Output Feedback

\[
\begin{aligned}
\dot{x} &= Ax + Bu \\
y &= Cx \\
\dot{\hat{x}} &= (A - LC - BK)\hat{x} + Ly \\
u &= -K\hat{x}
\end{aligned}
\]
Dynamic Output Feedback

\[
\dot{\hat{x}} = (A - LC - BK)\hat{x} + Ly, \quad u = -K\hat{x}
\]

Controller transfer function (from \(y\) to \(u\)):

\[
s\hat{X} = (A - LC - BK)\hat{X} + LY, \quad U = -K\hat{X}
\]

\[
U = -K(I_s - A + LC + BK)^{-1}LY = D(s)
\]
Dynamic Output Feedback: Does It Work?

Summarizing:

- When $y = x$, full state feedback $u = -Kx$ achieves desired pole placement.
- How do we know that $u = -K\hat{x}$ achieves similar objectives?

Here is our overall closed-loop system:

\[
\begin{align*}
\dot{x} &= Ax - BK\hat{x} \\
\dot{\hat{x}} &= (A - LC - BK)\hat{x} + LCx
\end{align*}
\]

We can write it in block matrix form:

\[
\begin{pmatrix}
\dot{x} \\
\dot{\hat{x}}
\end{pmatrix} =
\begin{pmatrix}
A & -BK \\
LC & A - LC - BK
\end{pmatrix}
\begin{pmatrix}
x \\
\hat{x}
\end{pmatrix}
\]

How do we relate this to “nominal” behavior, $A - BK$?
Dynamic Output Feedback

\[
\begin{pmatrix}
\dot{x} \\
\dot{\hat{x}}
\end{pmatrix} =
\begin{pmatrix}
A & -BK \\
LC & A - LC - BK
\end{pmatrix}
\begin{pmatrix}
x \\
\hat{x}
\end{pmatrix}
\]

Let us transform to new coordinates:

\[
\begin{pmatrix}
x \\
\hat{x}
\end{pmatrix} \mapsto \begin{pmatrix}
x \\
e
\end{pmatrix} =
\begin{pmatrix}
x \\
x - \hat{x}
\end{pmatrix} =
\begin{pmatrix}
I & 0 \\
I & -I
\end{pmatrix}
\begin{pmatrix}
x \\
\hat{x}
\end{pmatrix}
\]

Two key observations:

- \(T \) is invertible, so the new representation is equivalent to the old one
- in the new coordinates, we have

\[
\dot{x} = Ax - BK\hat{x} + BK(x - \hat{x}) = (A - BK)x + BK(x - \hat{x}) = (A - BK)x + BKe
\]

\[
\dot{e} = (A - LC)e
\]
The Main Result: Separation Principle

So now we can write

\[
\begin{bmatrix}
\dot{x} \\
\dot{e}
\end{bmatrix} = \begin{bmatrix}
A - BK & BK \\
0 & A - LC
\end{bmatrix}
\begin{bmatrix}
x \\
e
\end{bmatrix}
\]

upper triangular matrix

The closed-loop characteristic polynomial is

\[
\text{det}\left(I_s - A + BK \begin{bmatrix} -BK \\ 0 \end{bmatrix} I_s - A + LC \right) = \text{det} (I_s - A + BK) \cdot \text{det} (I_s - A + LC)
\]

Separation principle. The closed-loop eigenvalues are:

\[
\{ \text{controller poles (roots of } \text{det}(I_s - A + BK)) \} \cup \{ \text{observer poles (roots of } \text{det}(I_s - A + LC)) \}
\]

— this holds only for linear systems!!
Separation Principle

Separation principle. The closed-loop eigenvalues are:

\[
\{\text{controller poles (roots of } \det(I s - A + BK))\}\}
\cup \{\text{observer poles (roots of } \det(I s - A + LC))\}\}

— this holds only for linear systems!!

Moral of the story:

- If we choose observer poles to be several times faster than the controller poles (e.g., 2–5 times), then the controller poles will be dominant.
- Dynamic output feedback gives essentially the same performance as (nonimplementable) full-state feedback — provided observer poles are far enough into LHP.
- Remember: the system must be controllable and observable!!