Plan of the Lecture

- **Review**: stability from frequency response
- **Today’s topic**: control design using frequency response

Goal: understand the effect of various types of controllers (PD/lead, PI/lag) on the closed-loop performance by reading the open-loop Bode plot; develop frequency-response techniques for shaping transient and steady-state response using dynamic compensation

Reading: FPE, Chapter 6
Review: Phase Margin for 2nd-Order System

\[G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s}, \quad \text{closed-loop t.f.} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

\[\left. \text{PM} \right|_{K=1} = \tan^{-1} \left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1 - 2\zeta^2}} \right) \approx 100 \cdot \zeta \]

Conclusions:

larger PM \iff better damping
(open-loop quantity) \iff (closed-loop characteristic)

Thus, the overshoot \(M_p = \exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^2}} \right) \) and resonant peak \(M_r = \frac{1}{2\zeta \sqrt{1-\zeta^2}} - 1 \) are both related to PM through \(\zeta \)!!

\[\omega_{BW} = \omega_n \sqrt{-s} \quad \Rightarrow \quad \omega_{BW} = \text{closed-loop bandwidth} \]
Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $KG(s)$:

<table>
<thead>
<tr>
<th></th>
<th>low freq.</th>
<th>real zero/pole</th>
<th>complex zero/pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>mag. slope</td>
<td>n</td>
<td>up/down by 1</td>
<td>up/down by 2</td>
</tr>
<tr>
<td>phase</td>
<td>$n \times 90^\circ$</td>
<td>up/down by 90°</td>
<td>up/down by 180°</td>
</tr>
</tbody>
</table>

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

\[
\text{Phase} \approx \text{Magnitude Slope} \times 90^\circ
\]
Bode’s Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$\text{Phase} \approx \text{Magnitude Slope} \times 90^\circ$$

This suggests the following rule of thumb:

- **M** has slope -2 at ω_c
 $$\Rightarrow \phi(\omega_c) = -180^\circ$$
 $$\Rightarrow \text{bad (no PM)}$$
- **M** has slope -1 at ω_c
 $$\Rightarrow \phi(\omega_c) = -90^\circ$$
 $$\Rightarrow \text{good (PM = 90}^\circ)$$

— this is an important *design guideline*!!

(Similar considerations apply when M-plot has positive slope – depends on the t.f.)
Gain-Phase Relationship & Bandwidth

M-plot for open-loop t.f. KG:

![M-plot](image)

Closed-loop t.f.:

$$T(j\omega_c) = \frac{KG(j\omega_c)}{1 + KG(j\omega_c)} = \frac{-j}{1 - j}$$

$$|T(j\omega)| = \left| \frac{-j}{1 - j} \right| = \frac{1}{\sqrt{2}}$$

$$|T(0)| = \lim_{\omega \to 0} \frac{|KG(j\omega)|}{|1 + KG(j\omega)|} = 1$$

Note: $|KG(j\omega)| \to \infty$ as $\omega \to 0$

If $PM = 90^\circ$, then $\omega_c = \omega_{BW}$

If $PM < 90^\circ$, then $\omega_c \leq \omega_{BW} \leq 2\omega_c$ (see FPE)

ω_{BW} is by definition freq where CL has phase of $\frac{\pi}{2}$. $\omega_{BW} \geq \omega_n$ (see FPE) $\Delta \leq 2\omega_n$
Bode’s Gain-Phase Relationship suggests that we can shape the time response of the \textit{closed-loop} system by choosing K (or, more generally, a dynamic controller $KD(s)$) to tune the Phase Margin.

In particular, from the quantitative Gain-Phase Relationship,

\[
\text{Magnitude slope}(\omega_c) = -1 \quad \Rightarrow \quad \text{Phase}(\omega_c) \approx -90^\circ
\]

— which gives us PM of 90° and consequently \textbf{good damping}.

$\omega_c \approx \omega_B W$
Example

Let \(G(s) = \frac{1}{s^2} \) (double integrator)

Objective: design a controller \(KD(s) \) \((K = \text{scalar gain})\) to give

- stability \(\times \)
- good damping (will make this more precise in a bit)
- \(\omega_{BW} \approx 0.5 \) (always a closed-loop characteristic)

Strategy:

- from Bode’s Gain-Phase Relationship, we want magnitude slope = \(-1\) at \(\omega_c \) \(\rightarrow \) \(PM = 90^\circ \) \(\rightarrow \) good damping;
- if \(PM = 90^\circ \), then \(\omega_c = \omega_{BW} \) \(\rightarrow \) want \(\omega_c \approx 0.5 \)
Design, First Attempt

Let’s try proportional feedback:

\[D(s) = 1 \implies KD(s)G(s) = KG(s) = \frac{K}{s^2} \]

This is not a good idea: slope = -2 everywhere, so no PM.

We already know that P-gain alone won’t do the job:

\[K + s^2 = 0 \text{ (imag. poles)} \]
Design, Second Attempt

\[G(s) + R KD(s) = 1 \]

Let’s try proportional-derivative feedback:

\[KD(s) = K(\tau s + 1), \quad \text{where } K = K_P, \ K\tau = K_D \]

Open-loop transfer function: \(KD(s)G(s) = \frac{K(\tau s + 1)}{s^2} \).

Bode plot interpretation: PD controller introduces a Type 2 term in the numerator, which pushes the slope up by 1 — this has the effect of pushing the M-slope of \(KD(s)G(s) \) from \(-2\) to \(-1\) past the break-point \((\omega = 1/\tau) \).
Design, Second Attempt (PD-Control)

Open-loop transfer function: \(KD(s)G(s) = \frac{K(\tau s + 1)}{s^2} \)

For the G-P relationship to be valid, choose the break-point several times smaller than desired \(\omega_c \):

\[\Rightarrow \text{let’s take } \tau = 10 \]
\[\Rightarrow \frac{1}{\tau} = 0.1 = \frac{\omega_c}{5} \]

Open-loop t.f.:
Design, Second Attempt (PD-Control)

\[G(s) + R KD(s) \]

Open-loop transfer function: \(KD(s)G(s) = \frac{K(10s + 1)}{s^2} \)

- Want \(\omega_c \approx 0.5 \)
- This means that
 \[M(j0.5) = 1 \text{ set } M = 1 \]
 \[|KD(j0.5)G(j.05)| = \frac{K|5j + 1|}{0.5^2} = 4K \sqrt{26} \approx 20K \]

\[\implies K = \frac{1}{20} \]
PD Control Design: Evaluation

\[
G(s) = \frac{1}{s^2}
\]

Initial design: \(KD(s) = \frac{10s + 1}{20} \)

What have we accomplished?

- \(PM \approx 90^\circ \) at \(\omega_c = 0.5 \) \(\Rightarrow \omega_{BW} = \omega_c \).
- still need to check in Matlab and iterate if necessary

Trade-offs:

- want \(\omega_{BW} \) to be large enough for fast response (larger \(\omega_{BW} \rightarrow \) larger \(\omega_n \rightarrow \) smaller \(t_r \)), but not too large to avoid noise amplification at high frequencies
- PD control increases slope \(\rightarrow \) increases \(\omega_c \rightarrow \) increases \(\omega_{BW} \rightarrow \) faster response
- usual complaint: D-gain is not physically realizable, so let’s try lead compensation
Lead Compensation: Bode Plot

\[KD(s) = K \frac{s + z}{s + p}, \quad p \gg z \]

In Bode form:

\[KD(s) = \frac{Kz(s/z + 1)}{p(\frac{s}{p} + 1)} \]

or, absorbing \(z/p \) into the overall gain, we have

\[KD(s) = K \frac{(s/z + 1)}{(\frac{s}{p} + 1)} \]

Break-points:

- Type 1 zero with break-point at \(\omega = z \) (comes first, \(z \ll p \))
- Type 1 pole with break-point at \(\omega = p \)
Lead Compensation: Bode Plot

\[KD(s) = \frac{K \left(\frac{s}{z} + 1 \right)}{\left(\frac{s}{p} + 1 \right)} \]

- magnitude levels off at high frequencies \(\Rightarrow \) better noise suppression
- adds phase, hence the term “phase lead”
Lead Compensation and Phase Margin

\[KD(s) = \frac{K \left(\frac{s}{z} + 1 \right)}{\left(\frac{s}{p} + 1 \right)} \]

For best effect on PM, \(\omega_c \) should be halfway between \(z \) and \(p \) (on log scale):

\[\log \omega_c = \frac{\log z + \log p}{2} \]

or \(\omega_c = \sqrt{z \cdot p} \)

— geometric mean of \(z \) and \(p \)

Trade-offs: large \(p - z \) means

- large PM (closer to 90°)
- but also bigger \(M \) at higher frequencies (worse noise suppression)
Back to Our Example: \(G(s) = \frac{1}{s^2} \)

Objectives (same as before):

- stability
- good damping
- \(\omega_{BW} \) close to 0.5

\[KG(s) = \frac{K}{s^2} \text{ (w/o lead)}: \]

\[\frac{K}{(0.5)^2} = 1 \implies K = \frac{1}{4} \]

\[\omega_{BW} = \frac{1}{2} : \quad \omega_{BW} = \omega_c \]

\(\sim \) requires \(\omega_c = \frac{1}{2} \Rightarrow K = \frac{1}{4} \)

after adding lead:

— adding lead will increase \(\omega_c \)!!
Back to Our Example: \(G(s) = \frac{1}{s^2} \)

After adding lead with \(K = \frac{1}{4} \), what do we see?

 - adding lead increases \(\omega_c \)
 - \(\Rightarrow \text{PM} < 90^\circ \)
 - \(\Rightarrow \omega_{BW} \text{ may be } > \omega_c \)

To be on the safe side, we choose a new value of \(K \) so that

\[
\omega_c = \frac{\omega_{BW}}{2}
\]

(b/c generally \(\omega_c \leq \omega_{BW} \leq 2\omega_c \))

Thus, we want

\[
\omega_c = 0.25 \quad \Rightarrow \quad K = \frac{1}{16}
\]
Back to Our Example: $G(s) = \frac{1}{s^2}$

Next, we pick z and p so that ω_c is approximately their geometric mean:

e.g., $z = 0.1$, $p = 2$

$$\sqrt{z \cdot p} = \sqrt{0.2} \approx 0.447$$

Resulting lead controller:

$$KD(s) = \frac{1}{\frac{s}{0.1} + 1}$$

$$= \frac{1}{\frac{s}{2} + 1}$$

(may still need to be refined using Matlab)
Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM
 ▶ in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need
3. Check design and iterate until specs are met.

This is an intuitive procedure, but it’s not very precise, requires trial & error.