
Plan of the Lecture

I Review: coordinate transformations; conversion of any
controllable system to CCF.

I Today’s topic: pole placement by (full) state feedback.

Goal: learn how to assign arbitrary closed-loop poles of a
controllable system ẋ = Ax + Bu by means of state feedback
u = −Kx.

Reading: FPE, Chapter 7
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State-Space Realizations

ẋ = Ax + Bu
y = Cx

u y

↓

G(s) = C(Is− A)−1B

Open-loop poles are the eigenvalues of A:

det(Is−A) = 0

Then we add a controller to move the poles to desired locations:

G(s) Y
+
�R KD(s)
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Goal: Pole Placement by State Feedback
Consider a single-input system in state-space form:

ẋ = Ax + Bu
y = Cx

u y

Today, our goal is to establish the following fact:

If the above system is controllable, then we can assign
arbitrary closed-loop poles by means of a state feedback law

u = −Kx = −
(
k1 k2 . . . kn

)

x1
x2
...
xn


= −(k1x1 + . . . + knxn),

where K is a 1× n matrix of feedback gains.



Review: Controllability

Consider a single-input system (u ∈ R):

ẋ = Ax + Bu, y = Cx x ∈ Rn

The Controllability Matrix is defined as

C(A,B) =
[
B |AB |A2B | . . . |An−1B

]
We say that the above system is controllable if its
controllability matrix C(A,B) is invertible.

I As we will see today, if the system is controllable, then we
may assign arbitrary closed-loop poles by state feedback of
the form u = −Kx.

I Whether or not the system is controllable depends on its
state-space realization.
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ẋ = Ax + Bu, y = Cx x ∈ Rn

The Controllability Matrix is defined as

C(A,B) =
[
B |AB |A2B | . . . |An−1B

]
We say that the above system is controllable if its
controllability matrix C(A,B) is invertible.

I As we will see today, if the system is controllable, then we
may assign arbitrary closed-loop poles by state feedback of
the form u = −Kx.

I Whether or not the system is controllable depends on its
state-space realization.



Controller Canonical Form
A single-input state-space model

ẋ = Ax + Bu, y = Cx

is said to be in Controller Canonical Form (CCF) is the
matrices A,B are of the form

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
∗ ∗ ∗ . . . ∗ ∗

 , B =


0
0
...
0
1


A system in CCF is always controllable!!

(The proof of this for n > 2 uses the Jordan canonical form, we will

not worry about this.)



Coordinate Transformations

I We will see that state feedback design is particularly easy
when the system is in CCF.

I Hence, we need a way of constructing a CCF state-space
realization of a given controllable system.

I We will do this by suitably changing the coordinate system
for the state vector.
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Coordinate Transformations and State-Space Models

ẋ = Ax + Bu
T−−−−→ ˙̄x = Āx̄ + B̄u

y = Cx y = C̄x̄

where Ā = TAT−1, B̄ = TB, C̄ = CT−1

I The transfer function does not change.

I The controllability matrix is transformed:

C(Ā, B̄) = TC(A,B).

I The transformed system is controllable if and only if the
original one is.

I If the original system is controllable, then

T = C(Ā, B̄) [C(A,B)]−1 .

This gives us a way of systematically passing to CCF.
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where Ā = TAT−1, B̄ = TB, C̄ = CT−1

I The transfer function does not change.

I The controllability matrix is transformed:
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Example: Converting a Controllable System to CCF

A =

(
−15 8
−15 7

)
, B =

(
1
1

)
(C is immaterial)

Step 1: check for controllability.

C =

(
1 −7
1 −8

)
det C = −1 – controllable

Step 2: Determine desired C(Ā, B̄).

C(Ā, B̄) = [B̄ | ĀB̄] =

(
0 1
1 −8

)
Step 3: Compute T .

T = C(Ā, B̄) · [C(A,B)]−1 =

(
0 1
1 −8

)(
8 −7
1 −1

)
=

(
1 −1
0 1

)
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(
0 1
1 −8

)
Step 3: Compute T .
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Finally, Pole Placement via State Feedback
Consider a state-space model

ẋ = Ax + Bu, x ∈ Rn, u ∈ R
y = x

Let’s introduce a state feedback law

u = −Ky ≡ −Kx

= −
(
k1 k2 . . . kn

)

x1
x2
...
xn

 = −(k1x1 + . . . + knxn)

Closed-loop system:

ẋ = Ax−BKx = (A−BK)x

y = x
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Pole Placement via State Feedback
Let’s also add a reference input:

+
�r

ẋ = Ax + Bu

y = x

K

u
y

ẋ = Ax + B(−Kx + r) = (A−BK)x + Br, y = x

Take the Laplace transform:

sX(s) = (A−BK)X(s) + BR(s), Y (s) = X(s)

Y (s) = (Is−A + BK)−1B︸ ︷︷ ︸
G

R(s)

Closed-loop poles are the eigenvalues of A−BK!!
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Pole Placement via State Feedback

+
�r

ẋ = Ax + Bu

y = x

K

u
y

assigning closed-loop poles = assigning eigenvalues of A−BK

Now we will see that this is particularly straightforward if the
(A,B) system is in CCF.

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
−an −an−1 −an−2 . . . −a2 −a1

 , B =


0
0
...
0
1


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The Beauty of CCF

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
−an −an−1 −an−2 . . . −a2 −a1

 , B =


0
0
...
0
1



Claim.

det(Is−A) = sn + a1s
n−1 + . . . + an−1s + an

— the last row of the A matrix in CCF consists of the
coefficients of the characteristic polynomial, in reverse order,
with “−” signs.
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Proof of the Claim
A nice way is via Laplace transforms:

ẋ = Ax + Bu

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
−an −an−1 −an−2 . . . −a2 −a1

 , B =


0
0
...
0
1



Represent this as a system of ODEs:

ẋ1 = x2 X2 = sX1

ẋ2 = x3 X3 = sX2 = s2X1

...
...

ẋn = −
n∑

i=1

an−i+1xi + u
(
sn + a1s

n−1 + . . . + an
)︸ ︷︷ ︸

char. poly.

X1 = U
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... And, Back to Pole Placement

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
−an −an−1 −an−2 . . . −a2 −a1



BK =


0
0
...
0
1


(
k1 k2 . . . kn

)
=


0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
k1 k2 k3 . . . kn−1 kn


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Pole Placement in CCF
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

Closed-loop poles are the roots of the characteristic polynomial

det(Is−A + BK)

= sn + (a1 + kn)sn−1 + . . . + (an−1 + k2)s + (an + k1)

Key observation: When the system is in CCF, each control
gain affects only one of the coefficients of the characteristic
polynomial, and these coefficients can be assigned arbitrarily by
a suitable choice of k1, . . . , kn.

Hence the name Controller Canonical Form — convenient for
control design.
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Pole Placement by State Feedback

General procedure for any controllable system:

1. Convert to CCF using a suitable invertible coordinate
transformation T (such a transformation exists by
controllability).

2. Solve the pole placement problem in the new coordinates.

3. Convert back to original coordinates.
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Example

Given ẋ = Ax + Bu

A =

(
−15 8
−7 1

)
, B =

(
1
1

)
Goal: apply state feedback to place closed-loop poles at −10± j.

Step 1: convert to CCF — already did this

T =

(
1 −1
0 1

)
−→ Ā =

(
0 1
−15 −8

)
, B̄ =

(
0
1

)
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Example
Step 2: find u = −K̄x̄ to place closed-loop poles at −10± j.

Desired characteristic polynomial:

(s + 10 + j)(s + 10− j) = (s + 10)2 + 1 = s2 + 20s + 101

Thus, the closed-loop system matrix should be

Ā− B̄K̄ =

(
0 1
−101 −20

)
On the other hand, we know

Ā− B̄K̄ =

(
0 1

−(15 + k̄1) −(8 + k̄2)

)
=⇒ k̄1 = 86, k̄2 = 12

This gives the control law

u = −K̄x̄ = −
(
86 12

)(x̄1
x̄2

)
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Ā− B̄K̄ =

(
0 1

−(15 + k̄1) −(8 + k̄2)

)
=⇒ k̄1 = 86, k̄2 = 12

This gives the control law

u = −K̄x̄ = −
(
86 12

)(x̄1
x̄2

)



Example
Step 2: find u = −K̄x̄ to place closed-loop poles at −10± j.

Desired characteristic polynomial:

(s + 10 + j)(s + 10− j) = (s + 10)2 + 1 = s2 + 20s + 101

Thus, the closed-loop system matrix should be
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Step 3: convert back to the old coordinates.

u = −K̄x̄

= − K̄T︸︷︷︸
K

x

— therefore,
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