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Plan of the Lecture

» Review: state-space notions: canonical forms,
controllability.

» Today’s topic: controllability, stability, and pole-zero
cancellations; effect of coordinate transformations;
conversion of any controllable system to CCF.

Goal: explore the effect of pole-zero cancellations on internal
stability; understand the effect of coordinate transformations on
the properties of a given state-space model (transfer function;
open-loop poles; controllability).

Reading: FPE, Chapter 7
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State-Space Realizations

= Axr + Bu
y=Cx

» a given transfer function G(s) can be realized using
infinitely many state-space models

» certain properties make some realizations preferable to
others

» one such property is controllability
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Controllability Matrix
Consider a single-input system (u € R):
& = Az + Bu, y=Cz x €R"
The Controllability Matrix is defined as
C(A,B)=[B|AB|A*B| ... |A" 'B]

We say that the above system is controllable if its
controllability matrix C(A, B) is invertible.

» As we will see later, if the system is controllable, then we
may assign arbitrary closed-loop poles by state feedback of
the form v = — K.

» Whether or not the system is controllable depends on its
state-space realization.
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Let’s get back to our old friend:

Here, € R? = A € R?*? = C(4, B) € R**?
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Example: Computing C(A, B)
Let’s get back to our old friend:
T . 0 1 T 0 o €1
@)= ) @E)0)» v-en)
1 Y ¢

Here, € R? = A € R?*? = C(4, B) € R**?
0 1Y) /0 1
C(A,B)=[B|AB] AB= <_6 _5> <1> = (_5>
0 1
— C(A,B) = (1 _5)

Is this system controllable?

detC=-1#£0 = system is controllable



Controller Canonical Form

A single-input state-space model
& = Az + Bu, y=Cx

is said to be in Controller Canonical Form (CCF) is the
matrices A, B are of the form

010 ... 00 0

0O 01 ... 00 0
A=|: 1 w1, B=

0 01 0

* * * ok 1

A system in CCF is always controllable!!

(The proof of this for n > 2 uses the Jordan canonical form, we will
not worry about this.)



CCF with Arbitrary Zeros

s+1
I 1 had G(s) = ————, with
n our example, we had G(s) 21 5s g Vitha
minimum-phase zero at z = —1.



CCF with Arbitrary Zeros

s+1
I le, had G(s) = ————, with
n our example, we had G(s) 21 5s g Vitha
minimum-phase zero at z = —1.

Let’s consider a general zero location s = z:

s —Zz

G = 275516



CCF with Arbitrary Zeros

s+1
I le, had G(s) = ————, with
n our example, we had G(s) 21 5s g Vitha
minimum-phase zero at z = —1.

Let’s consider a general zero location s = z:

s —Zz

G = 275516

This gives us a CCF realization

G- (% @0 e

A B

)



CCF with Arbitrary Zeros

s+1
I 1 had G(s) = ————, with
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CCF with Arbitrary Zeros

s+1
In our example, we had G(s) = ———, with a
P () s2+55+6
minimum-phase zero at z = —1.
Let’s consider a general zero location s = z:
5—z

G = 275516

This gives us a CCF realization

()= 5 ) () el

Since A, B are the same, C(A, B) is the same = the system is
still controllable.

A system in CCF is controllable for any locations of the zeros.
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Start with the CCF

()= 5 )0 =)

C
A B

Convert to OCF: (A AT B CT,C ~ BT)

8 R ) S R G E R O

A=AT B=CT

We already know that this system realizes the same t.f. as the
original system.



OCF with Arbitrary Zeros

Start with the CCF
3.31 = 0 1 1 + 0 U, y:(—z 1) 1
o -6 =5 X2 1 — e \ L2
—_— —— ¢
A B
Convert to OCF: (A AT B CT,C ~ BT)
T9 1 -5 T9 1 ——— \ L2
— —
A=AT B=CT

We already know that this system realizes the same t.f. as the
original system.

But is it controllable?
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OCF with Arbitrary Zeros

1\ _ (0 —6 T n —z

i) ~\1 =5) \ )"
D —~
A=AT B=CT

Let’s find the controllability matrix:

0

C(A,B)—[B|AB] AB- (1

—6
-5

)(

1



OCF with Arbitrary Zeros

(2)-G ) @) () vmen()

Let’s find the controllability matrix:

C(A,B) = [B| AB] AB:(? :?) (_1) =<_Zﬁ5>
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OCF with Arbitrary Zeros

(2)-G ) @) () vmen()

Let’s find the controllability matrix:

The OCF realization of the transfer function
G(s) = —— 2

s2+55+6
even though the CCF is always controllable.

is not controllable when z = —2 or —3,



Beware of Pole-Zero Cancellations!
The OCF realization of the transfer function
s—z
Gs)= -2
(5) 524+ 5546

is not controllable when z = —2 or —3, even though the CCF is
always controllable.



Beware of Pole-Zero Cancellations!

The OCF realization of the transfer function

s — 2
Gls)= 22
(5) 52 4+55+6

is not controllable when z = —2 or —3, even though the CCF is
always controllable.

Let’s examine G(s) when z = —2:



Beware of Pole-Zero Cancellations!
The OCF realization of the transfer function
s—z
Gs)= -2
(5) 524+ 5546

is not controllable when z = —2 or —3, even though the CCF is
always controllable.

Let’s examine G(s) when z = —2:

s—z s+ 1

2 +55+6l—2 (s+2)(5+3) s+3

G(s) =



Beware of Pole-Zero Cancellations!
The OCF realization of the transfer function
s—z
Gs)= -2
(5) 524+ 5546

is not controllable when z = —2 or —3, even though the CCF is
always controllable.

Let’s examine G(s) when z = —2:

s—z s+ 1

2 +55+6l—2 (s+2)(5+3) s+3

G(s) =

— pole-zero cancellation!



Beware of Pole-Zero Cancellations!
The OCF realization of the transfer function
s—z
G(s)= —0— %
(5) 524+ 5546

is not controllable when z = —2 or —3, even though the CCF is
always controllable.

Let’s examine G(s) when z = —2:

s—z s+ 1

2 +55+6l—2 (s+2)(5+3) s+3

G(s) =

— pole-zero cancellation!

For z = —2, G(s) is a first-order transfer function, which can
always be realized by this 1st-order controllable model:

1
s+3

T1=-3r1+u, y=21 — G(s)=
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Beware of Pole-Zero Cancellations!!
We can look at this from another angle: consider the t.f.

1
s+3

G(s) =

We can realize it using a one-dimensional controllable
state-space model

:b1:—3x1+u, Yy =x1
or a noncontrollable two-dimensional state-space model
.’tl o 0 —6 T 2 o I
(@) -0 ) E) 0 v ()

— certainly not the best way to realize a simple t.f.!

Thus, even the state dimension of a realization of a given t.f.
is not unique!!
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Beware of Pole-Zero Cancellations!!

Here is a really bad realization of the t.f.

1
G =
(s) = T3
Use a two-dimensional model:
1= —3x1+u
:i)g = 1001’2

y=x

» 19 is not affected by the input u (i.e., it is an
uncontrollable mode), and not visible from the output y

» does not change the transfer function

» ... and yet, horrible to implement: z(t) oc !9

The transfer function can mask undesirable internal state
behavior!!
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Pole-Zero Cancellations and Stability

» In case of a pole-zero cancellation, the t.f. contains much
less information than the state-space model because some
dynamics are “hidden.”

» These dynamics can be either good (stable) or bad
(unstable), but we cannot tell from the t.f.

» Our original definition of stability (no RHP poles) is flawed
because there can be RHP eigenvalues of the system matrix
A that are canceled by zeros,yet they still have dynamics
associated with them.

Definition of Internal Stability (State-Space Version): a
state-space model with matrices (A, B, C, D) is internally
stable if all eigenvalues of the A matrix are in LHP.

This is equivalent to having no RHP open-loop poles and no
pole-zero cancellations in RHP.



Coordinate Transformations

Now that we have seen that a given transfer function can have
many different state-space realizations, we would like a
systematic procedure of generating such realizations, preferably
with favorable properties (like controllability).

One such procedure is by means of coordinate transformations.



Coordinate Transformations

T2

5

r+—x="Tx, T € R™ ™nonsingular

r=T"1z (go back and forth between the coordinate systems)
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Coordinate Transformations

For example,
T2 T2 Tr1 — X2
This can be represented as

_ 1 1
z="Tux, WhereT—(1 _1>

The transformation is invertible: detT = —2, and
11
detT \—-1 1 5 —35
Or we can see this directly:

T+ To =2x1; T1 — To = 219
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Coordinate Transformations and State-Space Models
Consider a state-space model

= Az + Bu
y=Cx

and a change of coordinates & = Tx (T invertible).

What does the system look like in the new coordinates?

i=Tx=Ti (linearity of derivative)

AT 'z + Bu) (z=T"1%)
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Coordinate Transformations and State-Space Models

T = Az + Bu —_— r=A

x
y="Cx y=
where
A=TAT, B=TB, C=CT!
What happens to

» the transfer function?

» the controllability matrix?
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Coordinate Transformations and State-Space Models

= Ax + Bu L)

y=Cx

Kl
I
N

_|_

< 8
1

QI
8]

where A = TAT !, B=TB, C=cr !

Claim: The transfer function doesn’t change.
Proof:

G(s)=C(Is— A)'B
— (CT™Y) (Is — TAT™") "' (TB)
— T Y (TIT's - TAT ) ' TB
—CT ' [T (Is— AT ' TB
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& = Az + Bu AN z = Az + Bu
y=Cx y=Cz
where A = TAT !, B=TB, C=cr !
Claim: The transfer function doesn’t change.
Proof:
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Coordinate Transformations and State-Space Models

& = Az + Bu AN z = Az + Bu
y=Cx y=Cz
where A = TAT !, B=TB, C=cr !
Claim: The transfer function doesn’t change.
Proof:
G(s)=C(Is— A~ 'B
— (CT™Y) (Is — TAT™") "' (TB)

T (TIT's = TAT™') "' TB

T[T (Is— A) T—l]’ TB
T 1T(IS—A) T-'TB
N——
I I
=C(Is—A)'B=G(s)

Il
QQQ
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Coordinate Transformations and State-Space Models

&= Ax + Bu _r, = A
y=Cx

8l
Il
+

<y
Il

QT
ST

where A = TAT !, B=TB, C=cr!
The transfer function doesn’t change.
In fact:

» open-loop poles don’t change

» characteristic polynomial doesn’t change:



Coordinate Transformations and State-Space Models

i = Ax + Bu — r=A

+
QT

8l

S

T
Yy = Cx Y=
where A = TAT !, B=TB, C=cr!

The transfer function doesn’t change.
In fact:

» open-loop poles don’t change

» characteristic polynomial doesn’t change:

det(Is — A) = det(Is — TAT 1)
=det [T(Is — A)~'T "]
=detT -det(Is — A)~! - det 771
= det(Is — A)~!
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z = Ax + Bu L> t=A
y=Czx

8l
Il
+

< gy
Il

QT
8

where A = TAT !, B=TB, C=cr!
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&= Ax + Bu _r, r=A

+
QT
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Yy = Cx Y=
where A = TAT !, B=TB, C=cr!

Claim: Controllability doesn’t change.
Proof: For any £k =0,1,.

.y

A*B = (TAT YW'TB = TA*T 'TB =TA*B  (by induction)

Therefore, C(A, B) = [TB|TAB| ... |TA" ' B]
=T[B|AB]| ... | A" 'B]
=TC(A,B)

Since det T # 0, det C(A, B) # 0 if and only if det C(A, B) # 0.

Thus, the new system is controllable if and only if the old one is.
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T = Az + Bu T, = Az +

Q\ DJ\
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y=Cx y=
where A = TAT 1, B =TB, C=cr!

Note: The controllability matriz does change:

C(A,B)= T C(A,B)
—_—— N e —

coord.
new
trans. old

0
T = C(4,B)[C(A, B)] !

This is a recipe for going from one controllable realization of a
given t.f. to another.

CCF is the most convenient controllable realization of a given
t.f., so we want to convert a given controllable system to CCF
(useful for control design).
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Example: Converting a Controllable System to CCF

Note!! The way I do this is different from the textbook.

. _[-15 8 1 . .
Consider A = <_15 7> , B= <1> (C is immaterial).

Convert to CCF if possible.
Step 1: check for controllability.
—-15 8\ (1 -7 1 -7
=359 0)-(F) = =05

detC = -1 — controllable
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Step 2: Determine desired C(4, B).

We need to figure out A and B.
For CCF, we must have

=) o)
—a2 —aq 1

so we need to find the coefficients a1, as.

Recall: the characteristic polynomial does not change:
det(Is — A) = det(Is — A)

s+15 =8\ S -1
det( 15 5—7>_det<a2 5—i—a1>

(s+15)(s —7)+ 120 = s(s + a1) + a2
2 +8s+15 =85>+ a1s + as
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Example: Converting a Controllable System to CCF

Step 2: Determine desired C(4, B).
We need to figure out A and B.
For CCF, we must have

(5 2) ()

We have just computed

A= &) o=0)

Therefore, the new controllability matrix should be

C(A,B) = [B| AB] = (? _18>
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Step 3: Compute T

Recall: T = C(A, B) - [C(A, B)]—l

C(A,B) = G -



In the next lecture, we will see why CCF is so useful.



